17 research outputs found

    Transient hypoglycemia as a rare cause of recurring transient loss of consciousness: a case report

    Get PDF
    Background Syncopes and transient loss of consciousness affect a large number of patients. Determining the underlying mechanism of a syncope is key to effectively treating and preventing future events. However, given the broad differential diagnosis of transient loss of consciousness, it can be challenging to determine the exact etiology. Case presentation This case presents a 42-year-old Caucasian female patient with recurrent transient loss of consciousness due to a hitherto undiagnosed impaired glucose tolerance and hyperinsulinism. The patient had been thoroughly tested for all typical causes of syncope without finding any causal explanation. An oral glucose tolerance test confirmed rapidly dropping blood glucose levels associated with rapidly fading consciousness as the underlying cause of transient loss of consciousness. Further diagnostic workup revealed that the patient suffered from impaired glucose tolerance and subsequent hyperinsulinism without overt diabetes mellitus. Nutritional counseling including reduction of glucose intake and frequently eating smaller meal portions led to a significant reduction in the frequency of transient loss of consciousness and overall improvement in quality of life. Conclusions The current European Society of Cardiology (ESC) guideline on syncope does not list hypoglycemia as a cause of transient loss of consciousness. However, this case report stresses that metabolic dysregulation can indeed lead to self-limited transient loss of consciousness. Thus, in the case of recurrent syncope with an unclear underlying mechanism, physicians should consider transient hypoglycemia and metabolic workup as a possible differential diagnosis

    Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current

    Get PDF
    Transgenic (TG) Ca2+/calmodulin-dependent protein kinase II (CaMKII) δC mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca2+ handling proteins as well as sarcolemmal Na+ channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na+ current (late INa) in early HF (8-week-old TG mice). Echocardiography revealed severe diastolic dysfunction in addition to decreased systolic ejection fraction. Premature arrhythmogenic contractions (PACs) in isolated isometrically twitching papillary muscles only occurred in TG preparations (5 vs. 0, P < 0.05) which could be completely terminated when treated with the late INa inhibitor ranolazine (Ran, 5 μmol/L). Force–frequency relationships revealed significantly reduced twitch force amplitudes in TG papillary muscles. Most importantly, diastolic tension increased with raising frequencies to a greater extent in TG papillary muscles compared to WT specimen (at 10 Hz: 3.7 ± 0.4 vs. 2.5 ± 0.3 mN/mm2; P < 0.05). Addition of Ran improved diastolic dysfunction to 2.1 ± 0.2 mN/mm2 (at 10 Hz; P < 0.05) without negative inotropic effects. Mechanistically, the late INa was markedly elevated in myocytes isolated from TG mice and could be completely reversed by Ran. In conclusion, our results show for the first time that TG CaMKIIδC overexpression induces diastolic dysfunction and arrhythmogenic triggers possibly via an enhanced late INa. Inhibition of elevated late INa had beneficial effects on arrhythmias as well as diastolic function in papillary muscles from CaMKIIδC TG mice. Thus, late INa inhibition appears to be a promising option for diastolic dysfunction and arrhythmias in HF where CaMKII is found to be increased

    Empagliflozin inhibits Na + /H + exchanger activity in human atrial cardiomyocytes

    Get PDF
    Aims Recent clinical trials have proven gliflozins to be cardioprotective in diabetic and non-diabetic patients. However, the underlying mechanisms are incompletely understood. A potential inhibition of cardiac Na+/H(+)exchanger 1 (NHE1) has been suggested in animal models. We investigated the effect of empagliflozin on NHE1 activity in human atrial cardiomyocytes. Methods and results Expression of NHE1 was assessed in human atrial and ventricular tissue via western blotting. NHE activity was measured as the maximal slope of pH recovery after NH(4)(+)pulse in isolated carboxy-seminaphtarhodafluor 1 (SNARF1)-acetoxymethylester-loaded murine ventricular and human atrial cardiomyocytes. NHE1 is abundantly expressed in human atrial and ventricular tissue. Interestingly, compared with patients without heart failure (HF), atrial NHE1 expression was significantly increased in patients with HF with preserved ejection fraction and atrial fibrillation. The largest increase in atrial and ventricular NHE1 expression, however, was observed in patients with end-stage HF undergoing heart transplantation. Importantly, acute exposure to empagliflozin (1 mu mol/L, 10 min) significantly inhibited NHE activity to a similar extent in human atrial myocytes and mouse ventricular myocytes. This inhibition was also achieved by incubation with the well-described selective NHE inhibitor cariporide (10 mu mol/L, 10 min). Conclusions This is the first study systematically analysing NHE1 expression in human atrial and ventricular myocardium of HF patients. We show that empagliflozin inhibits NHE in human cardiomyocytes. The extent of NHE inhibition was comparable with cariporide and may potentially contribute to the improved outcome of patients in clinical trials

    Methodology for the nocturnal cardiac arrhythmia ancillary study of the ADVENT-HF trial in patients with heart failure with reduced ejection fraction and sleep-disordered breathing

    Get PDF
    Background Sleep disordered breathing (SDB) may trigger nocturnal cardiac arrhythmias (NCA) in patients with heart failure with reduced ejection fraction (HFrEF). The NCA ancillary study of the ADVENT-HF trial will test whether, in HFrEF-patients with SDB, peak-flow-triggered adaptive servo-ventilation (ASVpf) reduces NCA. To this end, accurate scoring of NCA from polysomnography (PSG) is required. Objective To develop a method to detect NCA accurately from a single-lead electrocardiogram (ECG) recorded during PSG and assess inter-observer agreement for NCA detection. Methods Quality assurance of ECG analysis included training of the investigators, development of standardized technical quality, guideline-conforming semi-automated NCA-scoring via Holter-ECG software and implementation of an arrhythmia adjudication committee. To assess inter-observer agreement, the ECG was analysed by two independent investigators and compared for agreement on premature ventricular complexes (PVC) /h, premature atrial complexes/h (PAC) as well as for other NCA in 62 patients from two centers of the ADVENT-HF trial. Results The intraclass correlation coefficients for PVC/h and PAC/h were excellent: 0.99 (95%- confidence interval [CI]: 0.99–0.99) and 0.99 (95%-CI: 0.97–0.99), respectively. No clinically relevant difference in inter-observer classification of other NCA was found. The detection of non-sustained ventricular tachycardia (18% versus 19%) and atrial fibrillation (10% versus 11%) was similar between the two investigators. No sustained ventricular tachycardia was detected. Conclusion These findings indicate that our methods are very reliable for scoring NCAs and are adequate to apply for the entire PSG data set of the ADVENT-HF trial

    Early results of coronary artery bypass grafting with coronary endarterectomy for severe coronary artery disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the existence of controversial debates on the efficiency of coronary endarterectomy (CE), it is still used as an adjunct to coronary artery bypass grafting (CABG). This is particularly true in patients with endstage coronary artery disease. Given the improvements in cardiac surgery and postoperative care, as well as the rising number of elderly patient with numerous co-morbidities, re-evaluating the pros and cons of this technique is needed.</p> <p>Methods</p> <p>Patient demographic information, operative details and outcome data of 104 patients with diffuse calcified coronary artery disease were retrospectively analyzed with respect to functional capacity (NYHA), angina pectoris (CCS) and mortality. Actuarial survival was reported using a Kaplan-Meyer analysis.</p> <p>Results</p> <p>Between August 2001 and March 2005, 104 patients underwent coronary artery bypass grafting (CABG) with adjunctive coronary endarterectomy (CE) in the Department of Thoracic-, Cardiac- and Vascular Surgery, University of Goettingen. Four patients were lost during follow-up. Data were gained from 88 male and 12 female patients; mean age was 65.5 ± 9 years. A total of 396 vessels were bypassed (4 ± 0.9 vessels per patient). In 98% left internal thoracic artery (LITA) was used as arterial bypass graft and a total of 114 vessels were endarterectomized. CE was performed on right coronary artery (RCA) (n = 55), on left anterior descending artery (LAD) (n = 52) and circumflex artery (RCX) (n = 7). Ninety-five patients suffered from 3-vessel-disease, 3 from 2-vessel- and 2 from 1-vessel-disease. Closed technique was used in 18%, open technique in 79% and in 3% a combination of both. The most frequent endarterectomized localization was right coronary artery (RCA = 55%). Despite the severity of endstage atherosclerosis, hospital mortality was only 5% (n = 5). During follow-up (24.5 ± 13.4 months), which is 96% complete (4 patients were lost caused by unknown address) 8 patients died (cardiac failure: 3; stroke: 1; cancer: 1; unknown reasons: 3). NYHA-classification significantly improved after CABG with CE from 2.2 ± 0.9 preoperative to 1.7 ± 0.9 postoperative. CCS also changed from 2.4 ± 1.0 to 1.5 ± 0.8</p> <p>Conclusion</p> <p>Early results of coronary endarterectomy are acceptable with respect to mortality, NYHA & CCS. This technique offers a valuable surgical option for patients with endstage coronary artery disease in whom complete revascularization otherwise can not be obtained. Careful patient selection will be necessary to assure the long-term benefit of this procedure.</p

    HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease.

    Get PDF
    Fructose is a major component of dietary sugar and its overconsumption exacerbates key pathological features of metabolic syndrome. The central fructose-metabolising enzyme is ketohexokinase (KHK), which exists in two isoforms: KHK-A and KHK-C, generated through mutually exclusive alternative splicing of KHK pre-mRNAs. KHK-C displays superior affinity for fructose compared with KHK-A and is produced primarily in the liver, thus restricting fructose metabolism almost exclusively to this organ. Here we show that myocardial hypoxia actuates fructose metabolism in human and mouse models of pathological cardiac hypertrophy through hypoxia-inducible factor 1α (HIF1α) activation of SF3B1 and SF3B1-mediated splice switching of KHK-A to KHK-C. Heart-specific depletion of SF3B1 or genetic ablation of Khk, but not Khk-A alone, in mice, suppresses pathological stress-induced fructose metabolism, growth and contractile dysfunction, thus defining signalling components and molecular underpinnings of a fructose metabolism regulatory system crucial for pathological growth

    Sex difference in appropriate shocks but not mortality during long-term follow-up in patients with implantable cardioverter-defibrillators.

    No full text
    AIMS: Implantable cardioverter-defibrillators (ICDs) have been shown to improve survival, although a considerable number of patients never receive therapy. Implantable cardioverter-defibrillators are routinely implanted regardless of sex. There is continuing controversy whether major outcomes differ between men and women. METHODS AND RESULTS: In this retrospective single-centre study, 1151 consecutive patients (19% women) undergoing ICD implantation between 1998 and 2010 were followed for mortality and first appropriate ICD shock over 4.9 ± 2.7 years. Sex-related differences were investigated using multivariable Cox models adjusting for potential confounders. During follow-up, 318 patients died, a rate of 5.9% per year among men and 4.6% among women (uncorrected P = 0.08); 266 patients received a first appropriate ICD shock (6.3% per year among men vs. 3.6% among women, P = 0.002). After multivariate correction, independent predictors of all-cause mortality were age (hazard ratio, HR = 1.04 per year of age, 95% confidence interval (CI) [1.03-1.06], P < 0.001), left ventricular ejection fraction (HR = 0.98 per %, 95% CI [0.97-1.00], P = 0.025), renal function (HR = 0.99 per mL/min/1.73 m(2), 95% CI [0.99-1.00], P = 0.009), use of diuretics (HR = 1.81, 95% CI [1.29-2.54], P = 0.0023), peripheral arterial disease (HR = 2.21, 95% CI [1.62-3.00], P < 0.001), and chronic obstructive pulmonary disease (HR = 1.48, 95% CI [1.13-1.94], P = 0.029), but not sex. Female sex (HR = 0.51, 95% CI [0.33-0.81], P = 0.013), older age (HR = 0.98, 95% CI [0.97-0.99], P < 0.001), and primary prophylactic ICD indication (HR = 0.69, 95% CI [0.52-0.93], P = 0.043) were independent predictors for less appropriate shocks. CONCLUSION: Women receive 50% less appropriate shocks than men having similar mortality in this large single-centre population. These data may pertain to individually improved selection of defibrillator candidates using risk factors, e.g. sex as demonstrated in this study.peerReviewe
    corecore