76 research outputs found

    Therapeutic Hypothermia: Implications on Drug Therapy

    Get PDF

    The Report of the 2012-2013 Research and Graduate Affairs Committee

    Get PDF
    The RGA Committee met on October 29-30, 2012, in Crystal City, VA. The Committee corresponded via e-mail throughout the year, and had a conference call on June 13, 2013. The charge for the RGA Committee was to develop strategies on how to get our members to the right tables and at the right time for advancing pharmacy research and graduate education

    Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease

    Get PDF
    Preclinical and genetic epidemiologic studies suggest that modulating cytochrome P450 (CYP)-mediated arachidonic acid metabolism may have therapeutic utility in the management of coronary artery disease (CAD). However, predictors of inter-individual variation in CYP-derived eicosanoid metabolites in CAD patients have not been evaluated to date. Therefore, the primary objective was to identify clinical factors that influence CYP epoxygenase, soluble epoxide hydrolase (sEH), and CYP ω-hydroxylase metabolism in patients with established CAD

    Hepatic cytochrome P-450 expression in tumor necrosis factor-alpha receptor (p55/p75) knockout mice after endotoxin administration

    No full text
    ABSTRACT Hepatic cytochromes P-450 (CYP) are well characterized drug and xenobiotic metabolizing enzymes that are extensively regulated by genetic and environmental factors. Inflammatory mediators, including interleukins (ILs), interferons (IFNs), and tumor necrosis factor-␣ (TNF-␣), have been shown to downregulate several CYP isoforms; however, elucidation of the inflammatory mediators that are responsible for specific CYP down-regulation is difficult. The purpose of this experiment was to evaluate the role endogenous TNF-␣ plays in the regulation of liver CYP expression after endotoxin administration. Mice deficient in the p55 and p75 TNF receptors and wild-type mice were given Gram-negative bacterial lipopolysaccharide (LPS) and killed 24 h after administration. CYP analysis indicates that LPS decreases CYP1A, CYP2B, CYP3A, and CYP4A independently of TNF-␣. CYP2D9 and CYP2E1 activities show differential responses to LPS between wild-type and TNF p55/p75 receptor knockout mice, indicating the down-regulation of CYP2D9 and CYP2E1 is differentially modulated by TNF-␣ expression. Furthermore, TNF-␣ appears to affect the constitutive expression of CYP2D9 and CYP2E1. To date, this is the first evidence suggesting that a proinflammatory cytokine is involved in the constitutive regulation of drug-metabolizing enzymes

    The Systems Biology of Drug Metabolizing Enzymes and Transporters: Relevance to Quantitative Systems Pharmacology.

    No full text
    Quantitative systems pharmacology (QSP) has emerged as a transformative science in drug discovery and development. It is now time to fully rethink the biological functions of drug metabolizing enzymes (DMEs) and transporters within the framework of QSP models. The large set of DME and transporter genes are generally considered from the perspective of the absorption, distribution, metabolism, and excretion (ADME) of drugs. However, there is a growing amount of data on the endogenous physiology of DMEs and transporters. Recent studies-including systems biology analyses of "omics" data as well as metabolomics studies-indicate that these enzymes and transporters, which are often among the most highly expressed genes in tissues like liver, kidney, and intestine, have coordinated roles in fundamental biological processes. Multispecific DMEs and transporters work together with oligospecific and monospecific ADME proteins in a large multiorgan remote sensing and signaling network. We use the Remote Sensing and Signaling Theory (RSST) to examine the roles of DMEs and transporters in intratissue, interorgan, and interorganismal communication via metabolites and signaling molecules. This RSST-based view is applicable to bile acids, uric acid, eicosanoids, fatty acids, uremic toxins, and gut microbiome products, among other small organic molecules of physiological interest. Rooting this broader perspective of DMEs and transporters within QSP may facilitate an improved understanding of fundamental biology, physiologically based pharmacokinetics, and the prediction of drug toxicities based upon the interplay of these ADME proteins with key pathways in metabolism and signaling. The RSST-based view should also enable more tailored pharmacotherapy in the setting of kidney disease, liver disease, metabolic syndrome, and diabetes. We further discuss the pharmaceutical and regulatory implications of this revised view through the lens of systems physiology

    Intravenous Formulation of N

    No full text
    corecore