4 research outputs found

    Nanopatterning of Mobile Lipid Monolayers on Electron-Beam-Sculpted Teflon AF Surfaces

    No full text
    Direct electron-beam lithography is used to fabricate nanostructured Teflon AF surfaces, which are utilized to pattern surface-supported monolayer phospholipid films with 50 nm lateral feature size. In comparison with unexposed Teflon AF coatings, e-beam-irradiated areas show reduced surface tension and surface potential. For phospholipid monolayer spreading experiments, these areas can be designed to function as barriers that enclose unexposed areas of nanometer dimensions and confine the lipid film within. We show that the effectiveness of the barrier is defined by pattern geometry and radiation dose. This surface preparation technique represents an efficient, yet simple, nanopatterning strategy supporting studies of lipid monolayer behavior in ultraconfined spaces. The generated structures are useful for imaging studies of biomimetic membranes and other specialized surface applications requiring spatially controlled formation of self-assembled, molecularly thin films on optically transparent patterned polymer surfaces with very low autofluorescence

    Aligned Growth of Gold Nanorods in PMMA Channels: Parallel Preparation of Nanogaps

    No full text
    We demonstrate alignment and positional control of gold nanorods grown <i>in situ</i> on substrates using a seed-mediated synthetic approach. Alignment control is obtained by directing the growth of spherical nanoparticle seeds into nanorods in well-defined poly(methyl methacrylate) nanochannels. Substrates with prepatterned metallic electrodes provide an additional handle for the position of the gold nanorods and yield nanometer-sized gaps between the electrode and nanorod. The presented approach is a novel demonstration of bottom-up device fabrication of multiple nanogap junctions on a single chip mediated <i>via</i> <i>in situ</i> growth of gold nanorods acting as nanoelectrodes

    Express Optical Analysis of Epitaxial Graphene on SiC: Impact of Morphology on Quantum Transport

    No full text
    We show that inspection with an optical microscope allows surprisingly simple and accurate identification of single and multilayer graphene domains in epitaxial graphene on silicon carbide (SiC/G) and is informative about nanoscopic details of the SiC topography, making it ideal for rapid and noninvasive quality control of as-grown SiC/G. As an illustration of the power of the method, we apply it to demonstrate the correlations between graphene morphology and its electronic properties by quantum magneto-transport

    Quantum Hall Effect and Quantum Point Contact in Bilayer-Patched Epitaxial Graphene

    No full text
    We study an epitaxial graphene monolayer with bilayer inclusions via magnetotransport measurements and scanning gate microscopy at low temperatures. We find that bilayer inclusions can be metallic or insulating depending on the initial and gated carrier density. The metallic bilayers act as equipotential shorts for edge currents, while closely spaced insulating bilayers guide the flow of electrons in the monolayer constriction, which was locally gated using a scanning gate probe
    corecore