13,731 research outputs found
Taylor's (1935) dissipation surrogate reinterpreted
New results from direct numerical simulation of decaying isotropic turbulence show that Taylorâs expression for the viscous dissipation rate Δ = CΔU3/L is more appropriately interpreted as a surrogate for the inertial energy flux. As a consequence, the well known dependence of the Taylor prefactor CΔ on Reynolds number CΔ(RL)âCΔ,â can be understood as corresponding to the onset of an inertial range
Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds using All-Optical Charge Readout
Nanodiamonds containing nitrogen-vacancy (NV) centers offer a versatile
platform for sensing applications spanning from nanomagnetism to in-vivo
monitoring of cellular processes. In many cases, however, weak optical signals
and poor contrast demand long acquisition times that prevent the measurement of
environmental dynamics. Here, we demonstrate the ability to perform fast,
high-contrast optical measurements of charge distributions in ensembles of NV
centers in nanodiamonds and use the technique to improve the spin readout
signal-to-noise ratio through spin-to-charge conversion. A study of 38
nanodiamonds, each hosting 10-15 NV centers with an average diameter of 40 nm,
uncovers complex, multiple-timescale dynamics due to radiative and
non-radiative ionization and recombination processes. Nonetheless, the
nanodiamonds universally exhibit charge-dependent photoluminescence contrasts
and the potential for enhanced spin readout using spin-to-charge conversion. We
use the technique to speed up a relaxometry measurement by a factor of
five.Comment: 13 pages, 14 figure
The WMAP normalization of inflationary cosmologies
We use the three-year WMAP observations to determine the normalization of the
matter power spectrum in inflationary cosmologies. In this context, the
quantity of interest is not the normalization marginalized over all parameters,
but rather the normalization as a function of the inflationary parameters n and
r with marginalization over the remaining cosmological parameters. We compute
this normalization and provide an accurate fitting function. The statistical
uncertainty in the normalization is 3 percent, roughly half that achieved by
COBE. We use the k-l relation for the standard cosmological model to identify
the pivot scale for the WMAP normalization. We also quote the inflationary
energy scale corresponding to the WMAP normalization.Comment: 4 pages RevTex4 with two figure
Optimal Unilateral Carbon Policy
We derive the optimal unilateral policy in a general equilibrium model of trade and climate change where one region of the world imposes a climate policy and the rest of the world does not. A climate policy in one region shifts activitiesâextraction, production, and consumptionâin the other region. The optimal policy trades oïŹ the costs of these distortions. The optimal policy can be implemented through: (i) a nominal tax on extraction at a rate equal to the global marginal harm from emissions, (ii) a tax on imports of energy and goods, and a rebate of taxes on exports of energy but not goods, both at a lower rate than the extraction tax rate, and (iii) a goods-speciïŹc export subsidy. The policy controls leakage by combining supply-side and demand-side taxes to control the price of energy in the non-taxing region. It exploits international trade to expand the reach of the climate policy. We calibrate and simulate the model to illustrate how the optimal policy compares to more traditional policies such as extraction, production, and consumption taxes and combinations of those taxes. The simulations show that combinations of supply-side and demand-side taxes are much better than simpler policies and can perform nearly as well as the optimal policy
- âŠ