4 research outputs found

    Muscle activity-driven green-oriented random number generation mechanism to secure WBSN wearable device communications

    Get PDF
    Wireless body sensor networks (WBSNs) mostly consist of low-cost sensor nodes and implanted devices which generally have extremely limited capability of computations and energy capabilities. Hence, traditional security protocols and privacy enhancing technologies are not applicable to the WBSNs since their computations and cryptographic primitives are normally exceedingly complicated. Nowadays, mobile wearable and wireless muscle-computer interfaces have been integrated with the WBSN sensors for various applications such as rehabilitation, sports, entertainment, and healthcare. In this paper, we propose MGRNG, a novel muscle activity-driven green-oriented random number generation mechanism which uses the human muscle activity as green energy resource to generate random numbers (RNs). The RNs can be used to enhance the privacy of wearable device communications and secure WBSNs for rehabilitation purposes. The method was tested on 10 healthy subjects as well as 5 amputee subjects with 105 segments of simultaneously recorded surface electromyography signals from their forearm muscles. The proposed MGRNG requires only one second to generate a 128-bit RN, which is much more efficient when compared to the electrocardiography-based RN generation algorithms. Experimental results show that the RNs generated from human muscle activity signals can pass the entropy test and the NIST random test and thus can be used to secure the WBSN nodes

    Spatio-temporal based descriptor for limb movement-intent characterization in EMG-pattern recognition system

    No full text
    Electromyogram (EMG) pattern-recognition (PR) is the most widely adopted prostheses/rehabilitation robots control method that seamlessly support multi-degrees of freedom (MDF) function in an intuitive fashion. The feature extraction framework applied in such PR-based control essentially determines the control performance of the prosthetic device. Based on the drawbacks of the commonly utilized feature extraction methods, this study proposed a spatio-temporal-based feature set (STFS) that might optimally characterize EMG signal patterns even in the presence of white Gaussian noise (WGN) to realize consistently accurate and stable decoding of multiple classes of limb-movements. For benchmark evaluation, the performance of the proposed STFS method was examined in comparison to notable existing popular methods using high density surface EMG recordings from 8 amputees, with metrics such as classification error (CE) and feature-space separability index. Compared to the existing methods, the STFS recorded substantial reduction of up 16.73% even in the presence the inevitable WGN at p<0.05. Also, with principal component analysis concept, the proposed STFS feature-space indicates obvious class separability compared to the previous methods. Therefore, the newly proposed STFS method could potentially facilitate the realization of consistently accurate and reliable PR-based control for MDF prostheses/rehabilitation robots
    corecore