4,433 research outputs found

    Classical quasi-trigonometric rr-matrices of Cremmer-Gervais type and their quantization

    Get PDF
    We propose a method of quantization of certain Lie bialgebra structures on the polynomial Lie algebras related to quasi-trigonometric solutions of the classical Yang-Baxter equation. The method is based on so-called affinization of certain seaweed algebras and their quantum analogues.Comment: 9 pages, LaTe

    SUSY transformations with complex factorization constants. Application to spectral singularities

    Full text link
    Supersymmetric (SUSY) transformation operators corresponding to complex factorization constants are analyzed as operators acting in the Hilbert space of functions square integrable on the positive semiaxis. Obtained results are applied to Hamiltonians possessing spectral singularities which are non-Hermitian SUSY partners of selfadjoint operators. A new regularization procedure for the resolution of the identity operator in terms of continuous biorthonormal set of the non-Hermitian Hamiltonian eigenfunctions is proposed. It is also shown that the continuous spectrum eigenfunction has zero binorm (in the sense of distributions) at the singular point.Comment: Thanks to A. Sokolov a number of inaccuracies are correcte
    corecore