54 research outputs found

    CCL2/MCP-I Genotype-Phenotype Relationship in Latent Tuberculosis Infection

    Get PDF
    Among the known biomarkers, chemokines, secreted by activated macrophages and T cells, attract groups of immune cells to the site of infection and may determine the clinical outcome. Association studies of CCL-2/MCP-1 -2518 A/G functional SNP linked to high and low phenotypes with tuberculosis disease susceptibility have shown conflicting results in tuberculosis. Some of these differences could be due the variability of latent infection and recent exposure in the control groups. We have therefore carried out a detailed analysis of CCL-2 genotype SNP -2518 (A/G transition) with plasma CCL-2 levels and related these levels to tuberculin skin test positivity in asymptomatic community controls with no known exposure to tuberculosis and in recently exposed household contacts of pulmonary tuberculosis patients. TST positivity was linked to higher concentrations of plasma CCL2 (Mann Whitney U test; p = 0.004) and was more marked when the G allele was present in TST+ asymptomatic controls (A/G; p = 0.01). Recent exposure also had a significant effect on CCL-2 levels and was linked to the G allele (p = 0.007). Therefore association studies for susceptibility or protection from disease should take into consideration the PPD status as well as recent exposure of the controls group used for comparison. Our results also suggest a role for CCL-2 in maintaining the integrity of granuloma in asymptomatic individuals with latent infection in high TB burden settings. Therefore additional studies into the role of CCL-2 in disease reactivation and progression are warranted

    The Stress-Response Factor SigH Modulates the Interaction between Mycobacterium tuberculosis and Host Phagocytes

    Get PDF
    The Mycobacterium tuberculosis stress response factor SigH plays a crucial role in modulating the pathogen's response to heat, oxidative-stress, envelope damage and hypoxia. We hypothesized that the lack of this key stress response factor would alter the interaction between the pathogen and its host cells. We compared the interaction of Mtb, Mtb:Δ-sigH and a strain where the mutation had been genetically complemented (Mtb: Δ-sigH:CO) with primary rhesus macaque bone marrow derived macrophages (Rh-BMDMs). The expression of numerous inducible and homeostatic (CCL) β-chemokines and several apoptotic markers was induced to higher levels in the cells infected with Mtb:Δ-sigH, relative to Mtb or the complemented strain. The differential expression of these genes manifested into functional differences in chemotaxis and apoptosis in cells infected with these two strains. The mutant strain also exhibited reduced late-stage survival in Rh-BMDMs. We hypothesize that the product of one or more SigH-dependent genes may modulate the innate interaction of Mtb with host cells, effectively reducing the chemokine-mediated recruitment of immune effector cells, apoptosis of infected monocytes and enhancing the long-term survival and replication of the pathogen in this milieu The significantly higher induction of Prostaglandin Synthetase 2 (PTGS2 or COX2) in Rh-BMDMs infected with Mtb relative to Mtb: Δ-sigH may explain reduced apoptosis in Mtb-infected cells, as PTGS2 is known to inhibit p53-dependent apoptosis.The SigH-regulon modulates the innate interaction of Mtb with host phagocytes, perhaps as part of a strategy to limit its clearance and prolong its survival. The SigH regulon appears to be required to modulate innate immune responses directed against Mtb

    Characterizing the Role of Cell-Wall β-1,3-Exoglucanase Xog1p in Candida albicans Adhesion by the Human Antimicrobial Peptide LL-37

    Get PDF
    Candida albicans is the major fungal pathogen of humans. Its adhesion to host-cell surfaces is the first critical step during mucosal infection. Antimicrobial peptides play important roles in the first line of mucosal immunity against C. albicans infection. LL-37 is the only member of the human cathelicidin antimicrobial peptide family and is commonly expressed in various tissues, including epithelium. We previously showed that LL-37 significantly reduced C. albicans adhesion to plastic, oral epidermoid OECM-1 cells, and urinary bladders of female BALB/c mice. The inhibitory effect of LL-37 on cell adhesion occurred via the binding of LL-37 to cell-wall carbohydrates. Here we showed that formation of LL-37–cell-wall protein complexes potentially inhibits C. albicans adhesion to polystyrene. Using phage display and ELISA, we identified 10 peptide sequences that could bind LL-37. A BLAST search revealed that four sequences in the major C. albicans cell-wall β-1,3-exoglucanase, Xog1p, were highly similar to the consensus sequence derived from the 10 biopanned peptides. One Xog1p-derived peptide, Xog1p90–115, and recombinant Xog1p associated with LL-37, thereby reversing the inhibitory effect of LL-37 on C. albicans adhesion. LL-37 reduced Xog1p activity and thus interrupted cell-wall remodeling. Moreover, deletion of XOG1 or another β-1,3-exoglucanase-encoding gene EXG2 showed that only when XOG1 was deleted did cellular exoglucanase activity, cell adhesion and LL-37 binding decrease. Antibodies against Xog1p also decreased cell adhesion. These data reveal that Xog1p, originally identified from LL-37 binding, has a role in C. albicans adhesion to polystyrene and, by inference, attach to host cells via direct or indirect manners. Compounds that target Xog1p might find use as drugs that prevent C. albicans infection. Additionally, LL-37 could potentially be used to screen for other cell-wall components involved in fungal cell adhesion

    Herpes Simplex Virus-Induced Epithelial Damage and Susceptibility to Human Immunodeficiency Virus Type 1 Infection in Human Cervical Organ Culture

    Get PDF
    Normal human premenopausal cervical tissue has been used to derive primary cell populations and to establish ex vivo organ culture systems to study infections with herpes simplex virus (HSV-1 or HSV-2) and human immunodeficiency virus type 1 (HIV-1). Infection with either HSV-1 or HSV-2 rapidly induced multinuclear giant cell formation and widespread damage in mucosal epithelial cells. Subsequent exposure of the damaged mucosal surfaces to HIV-1 revealed frequent co-localization of HSV and HIV-1 antigens. The short-term organ culture system provides direct experimental support for the epidemiological findings that pre-existing sexually transmitted infections, including primary and recurrent herpes virus infections at mucosal surfaces, represent major risk factors for acquisition of primary HIV-1 infection. Epithelial damage in combination with pre-existing inflammation, as described here for overtly normal human premenopausal cervix, creates a highly susceptible environment for the initiation and establishment of primary HIV-1 infection in the sub-mucosa of the cervical transformation zone

    Modular Design for Planetary Rover Autonomous Navigation Software using ROS

    No full text
    is paper presents a modular design concept of autonomous navigation software for planetary rovers. e software covers major navigation functions such as autonomous localisation and mapping, visual rock detection, and path planning. e proposed design includes a generic data pipeline which produces a sequence of data products based on sensory raw data. To effectively and efficiently integrate the various design elements, Robot Operating System (known as ROS) is used as the middleware framework to implement the generic data pipeline and synthesize various navigation functions in terms of ROS nodes. e paper also presents test results of the proposed software implemented within the Surrey Rover Autonomous Software and Hardware Testbed (SMART) based on real and artificial data
    corecore