5 research outputs found

    Dose-dependent and compound-specific phospho-signalling responses after (geno)toxic treatment

    Get PDF
    Genotoxic stressors may induce various types of DNA damage triggering the activation of the DNA damage response. However, the dose-dependency and the drug compound-specificity of the activated responses are unclear. Here, I first investigated the phospho-signalling responses induced by four chemical stressors with distinct modes of action and uncovered that, at equitoxic doses, even two ‘similar’ DNA damaging agents induced discrete and complex phosphorylation signalling cascades. Next, I investigated the ionising radiation (IR) dose-dependent responses using multi-omics and systems analyses to investigate the molecular and cellular responses to low and high doses of IR. I uncovered that the IR induced molecular responses have different dose-effect relationships. A minor part of the phosphorylation signalling and transcription involved in the DSB-related responses displayed a linear dose-effect relationship. Contrastingly, the reactive oxygen species (ROS) production-related molecular and cellular responses and DNA replication stress revealed complex dose-response relationships. LD uniquely activates ROS-related responses at multiple molecular levels, including proteome, phosphoproteome, nascent transcriptome and metabolome. Further work will be required to determine how these differences in molecular and cellular responses observed over hours after low and high doses impact the risk for cancer development that occurs over months and years. LUMC / Geneeskund

    Phosphoproteomics sample preparation impacts biological interpretation of phosphorylation signaling outcomes

    Get PDF
    The influence of phosphoproteomics sample preparation methods on the biological interpretation of signaling outcome is unclear. Here, we demonstrate a strong bias in phosphorylation signaling targets uncovered by comparing the phosphoproteomes generated by two commonly used methods-strong cation exchange chromatography-based phosphoproteomics (SCXPhos) and single-run high-throughput phosphoproteomics (HighPhos). Phosphoproteomes of embryonic stem cells exposed to ionizing radiation (IR) profiled by both methods achieved equivalent coverage (around 20,000 phosphosites), whereas a combined dataset significantly increased the depth (>30,000 phosphosites). While both methods reproducibly quantified a subset of shared IR-responsive phosphosites that represent DNA damage and cell-cycle-related signaling events, most IR-responsive phosphoproteins (>82%) and phosphosites (>96%) were method-specific. Both methods uncovered unique insights into phospho-signaling mediated by single (SCXPhos) versus double/multi-site (HighPhos) phosphorylation events; particularly, each method identified a distinct set of previously unreported IR-responsive kinome/phosphatome (95% disparate) directly impacting the uncovered biology.Genome Instability and Cance

    Organoids derived from neoadjuvant FOLFIRINOX patients recapitulate therapy resistance in pancreatic ductal adenocarcinoma

    Get PDF
    Purpose: We investigated whether organoids can be generated from resected tumors of patients who received eight cycles of neoadjuvant FOLFIRINOX chemotherapy before surgery, and evaluated the sensitivity/resistance of these surviving cancer cells to cancer therapy. Experimental Design: We generated a library of 10 PDAC organoid lines: five each from treatment-naive and FOLFIRINOX-treated patients. We, first, assessed the histological, genetic, and transcriptional characteristics of the organoids and their matched primary PDAC tissue. Next, the organoids' response to treatment with single agents - 5-FU, irinotecan, and oxaliplatin - of the FOLFIRINOX regimen as well as combined regimen was evaluated. Finally, global mRNA-seq analyses were performed to identify FOLFIRINOX resistance pathways. Results: All 10 patient-derived PDAC organoids recapitulate histological, genetic, and transcriptional characteristics of their primary tumor tissue. Neoadjuvant FOLFIRINOXtreated organoids display resistance to FOLFIRINOX (5/5), irinotecan (5/5) and oxaliplatin (4/5) when compared to treatment-naive organoids (FOLFIRINOX: 1/5, irinotecan: 2/5, oxaliplatin: 0/5). 5-FU treatment responses between naive and treated organoids were similar. Comparative global transcriptome analysis of treatment-naive and FOLFIRINOX samples - in both organoids and corresponding matched tumor tissues - uncovered modulated pathways mainly involved in genomic instability, energy metabolism, and innate immune system. Conclusion: Resistance development in neoadjuvant FOLFIRINOX organoids, recapitulating their primary tumor resistance, suggests continuation of FOLFIRINOX therapy as an adjuvant treatment may not be advantageous for these patients. Gene expression profiles of PDAC organoids identify targetable pathways involved in chemoresistance development upon neoadjuvant FOLFIRINOX treatment, thus opening up combination therapy possibilities.Genome Instability and Cance

    Low and high doses of ionizing radiation evoke discrete global (phospho) proteome responses

    No full text
    Background: Although cancer risk is assumed to be linear with ionizing radiation (IR) dose, it is unclear to what extent low doses (LD) of IR from medical and occupational exposures pose a cancer risk for humans. Improved mechanistic understanding of the signaling responses to LD may help to clarify this uncertainty. Here, we per -formed quantitative mass spectrometry-based proteomics and phosphoproteomics experiments, using mouse embryonic stem cells, at 0.5 h and 4 h after exposure to LD (0.1 Gy) and high doses (HD; 1 Gy) of IR. Results: The proteome remained relatively stable (29; 0.5% proteins responded), whereas the phosphoproteome changed dynamically (819; 7% phosphosites changed) upon irradiation. Dose-dependent alterations of 25 IR-responsive proteins were identified, with only four in common between LD and HD. Mitochondrial metabolic proteins and pathways responded to LD, whereas transporter proteins and mitochondrial uncoupling pathways responded to HD. Congruently, mitochondrial respiration increased after LD exposure but decreased after HD exposure. While the bulk of the phosphoproteome response to LD (76%) occurred already at 0.5 h, an equivalent proportion of the phosphosites responded to HD at both time points. Motif, kinome/phosphatome, kinase-substrate, and pathway analyses revealed a robust DNA damage response (DDR) activation after HD exposure but not after LD exposure. Instead, LD-irradiation induced (de)phosphorylation of kinases, kinase-substrates and phosphatases that predominantly respond to reactive oxygen species (ROS) production. Conclusion: Our analyses identify discrete global proteome and phosphoproteome responses after LD and HD, uncovering novel proteins and protein (de)phosphorylation events involved in the dose-dependent ionizing ra-diation responses.Genome Instability and Cance

    Divergent Molecular and Cellular Responses to Low and High-Dose Ionizing Radiation

    No full text
    Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).Cancer Signaling networks and Molecular Therapeutic
    corecore