5 research outputs found

    Development of a powerful UCN source at PNPI's WWR-M reactor

    No full text
    The WWR-M reactor at PNPI is planned to be equipped with a high-flux source for ultracold neutrons (UCNs). The method of UCN production is based on neutron conversion in superfluid helium, exploiting the particular qualities of that quantum liquid. As a result of optimizing the source parameters, we expect a temperature of superfluid helium of 1.2 K and a UCN density of 1.3 × 104 cm−3 in a neutron electric dipole moment (EDM) spectrometer. The expected flux densities of cold neutrons (with wavelengths in the range 2–20 Å) and very cold neutrons (50–100 Å) at the output of a neutron guide with a cross section of 30 × 200 mm2 are 9.7 × 107 cm−2s−1 and 8.3 × 105 cm−2s−1, respectively. The capability of maintaining a temperature of 1.37 K at a thermal load of 60 W was shown experimentally, while the theoretical load is expected to be 37 W. Calculations show that it is possible to decrease the helium temperature down to 1.2 K at similar heat load. The project includes the development of experimental stations at UCN beams, such as for a neutron EDM search, measurements of the neutron lifetime, and for a search for neutron-to-mirror-neutron transitions. In addition, three beams of cold and very cold neutrons are foreseen. At present, the vacuum container of the UCN source has been manufactured and the production of the low-temperature deuterium and helium parts of the source has been started

    Development of a powerful UCN source at PNPI's WWR-M reactor

    Get PDF
    The WWR-M reactor at PNPI is planned to be equipped with a high-flux source for ultracold neutrons (UCNs). The method of UCN production is based on neutron conversion in superfluid helium, exploiting the particular qualities of that quantum liquid. As a result of optimizing the source parameters, we expect a temperature of superfluid helium of 1.2 K and a UCN density of 1.3 × 104 cm−3 in a neutron electric dipole moment (EDM) spectrometer. The expected flux densities of cold neutrons (with wavelengths in the range 2–20 Å) and very cold neutrons (50–100 Å) at the output of a neutron guide with a cross section of 30 × 200 mm2 are 9.7 × 107 cm−2s−1 and 8.3 × 105 cm−2s−1, respectively. The capability of maintaining a temperature of 1.37 K at a thermal load of 60 W was shown experimentally, while the theoretical load is expected to be 37 W. Calculations show that it is possible to decrease the helium temperature down to 1.2 K at similar heat load. The project includes the development of experimental stations at UCN beams, such as for a neutron EDM search, measurements of the neutron lifetime, and for a search for neutron-to-mirror-neutron transitions. In addition, three beams of cold and very cold neutrons are foreseen. At present, the vacuum container of the UCN source has been manufactured and the production of the low-temperature deuterium and helium parts of the source has been started

    "Flora of Russia" on iNaturalist: a dataset

    No full text
    The "Flora of Russia" project on iNaturalist brought together professional scientists and amateur naturalists from all over the country. Over 10,000 people are involved in the data collection.Within 20 months the participants accumulated over 750,000 photo observations of 6,853 species of the Russian flora. This constitutes the largest dataset of open spatial data on the country’s biodiversity and a leading source of data on the current state of the national flora. About 85% of all project data are available under free licenses (CC0, CC-BY, CC-BY-NC) and can be freely used in scientific, educational and environmental activities

    "Flora of Russia" on iNaturalist: a dataset

    No full text
    The "Flora of Russia" project on iNaturalist brought together professional scientists and amateur naturalists from all over the country. Over 10,000 people are involved in the data collection.Within 20 months the participants accumulated over 750,000 photo observations of 6,853 species of the Russian flora. This constitutes the largest dataset of open spatial data on the country’s biodiversity and a leading source of data on the current state of the national flora. About 85% of all project data are available under free licenses (CC0, CC-BY, CC-BY-NC) and can be freely used in scientific, educational and environmental activities

    "Flora of Russia" on iNaturalist: a dataset

    No full text
    The "Flora of Russia" project on iNaturalist brought together professional scientists and amateur naturalists from all over the country. Over 10,000 people are involved in the data collection.Within 20 months the participants accumulated over 750,000 photo observations of 6,853 species of the Russian flora. This constitutes the largest dataset of open spatial data on the country’s biodiversity and a leading source of data on the current state of the national flora. About 85% of all project data are available under free licenses (CC0, CC-BY, CC-BY-NC) and can be freely used in scientific, educational and environmental activities
    corecore