28 research outputs found

    Effects of the Tax Cuts and Jobs Act on State Individual Income Taxes

    Get PDF
    This article considers how the changes in the federal tax code will affect states whose tax codes link to the federal tax code. The article first summarizes the different parts of the federal code state tax codes link to, most importantly by linking to the definition of income. The article then describes the provisions of the Tax Cuts and Jobs Act that will have the biggest effect on state taxes. The article then uses four sample states (Missouri, Colorado, Utah and New York) and the District of Columbia to analyze how the changes contained in the Tax Cut and Jobs Act will affect: 1) the revenue collected by these jurisdictions; and 2) the state tax incidence across different income groups

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≥week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    Got a Bone To Pick? An Investigation Into the Efficacy of Tibial Intraosseous Infusions

    No full text
    Intraosseous (IO) infusions are an emergency procedure for injection directly into the bone marrow when other routes of fluid resuscitation are impossible and the patient’s life or limb is at risk. Across the U.S., medical providers and state protocols recommend IO injections when intravenous (IV) access is unavailable. Despite its widespread use in some of the most acutely life-threatening conditions in the emergency room (ER), there is a lack of scientific studies supporting many IO protocols—like injection pressure—for which medical providers are legally obligated to abide by. In this paper, we mechanistically modeled a 15-gauge EZ-IO injection of saline into the proximal tibia of an average human adult to arrive at an evidence-based clinical recommendation for injection pressure. Our model solved the mass transfer equation for the transport of water and the Darcy equation together with the continuity equation for fluid flow in porous media. We modeled the proximal tibia as a 3D cylinder with a linearly varying diameter consisting of bone marrow concentric with a surrounding cortical bone layer. We assumed the tibia was thermally insulated from the rest of the circulatory system for the short time frame of the injection and the saline was pre-heated to body temperature prior to injection. We varied the input pressure for the infusion and reported its effect on both the infusion flow rate and the total volume of water delivered to the patient. Our simulations support the idea that IO injections offer a comparable alternative to IV injections in terms of both flow rate and total water uptake (i.e. patient rehydration). The simulation tracked the concentration of water associated with different injection pressures and found that increased pressure had diminishing returns on the infusion flow rate. From this novel finding, we recommend that IO device manufacturers prioritize using larger bore needle tips with lower inlet pressure to maximize flow rate while minimizing patient pain. Additionally, since our model found that the optimal pressure for a 15-gauge EZ-IO infusion was equivalent to current protocol recommendations (300 mmHg), future tests should model if IO infusion with other fluids and needle gauges produces different results. Moreover, the effectiveness of IO infusion in patients with “abnormal” bone conditions could also be modeled by changing the material properties of the tibia in the simulation, which could ultimately lead to different pressure recommendations depending on the patient’s anatomy and medical condition(s)
    corecore