8 research outputs found

    Efficacy of acute administration of inhaled argon on traumatic brain injury in mice

    Get PDF
    BACKGROUND: Whilst there has been progress in supportive treatment for traumatic brain injury (TBI), specific neuroprotective interventions are lacking. Models of ischaemic heart and brain injury show the therapeutic potential of argon gas, but it is still not known whether inhaled argon (iAr) is protective in TBI. We tested the effects of acute administration of iAr on brain oedema, tissue micro-environmental changes, neurological functions, and structural outcome in a mouse model of TBI. METHODS: Anaesthetised adult C57BL/6J mice were subjected to severe TBI by controlled cortical impact. Ten minutes after TBI, the mice were randomised to 24 h treatments with iAr 70%/O2 30% or air (iCtr). Sensorimotor deficits were evaluated up to 6 weeks post-TBI by three independent tests. Cognitive function was evaluated by Barnes maze test at 4 weeks. MRI was done to examine brain oedema at 3 days and white matter damage at 5 weeks. Microglia/macrophages activation and functional commitment were evaluated at 1 week after TBI by immunohistochemistry. RESULTS: iAr significantly accelerated sensorimotor recovery and improved cognitive deficits 1 month after TBI, with less white matter damage in the ipsilateral fimbria and body of the corpus callosum. Early changes underpinning protection included a reduction of pericontusional vasogenic oedema and of the inflammatory response. iAr significantly reduced microglial activation with increases in ramified cells and the M2-like marker YM1. CONCLUSIONS: iAr accelerates recovery of sensorimotor function and improves cognitive and structural outcome 1 month after severe TBI in adult mice. Early effects include a reduction of brain oedema and neuroinflammation in the contused tissue

    Efficacy of acute administration of inhaled argon on traumatic brain injury in mice

    No full text
    Background: Whilst there has been progress in supportive treatment for traumatic brain injury (TBI), specific neuroprotective interventions are lacking. Models of ischaemic heart and brain injury show the therapeutic potential of argon gas, but it is still not known whether inhaled argon (iAr) is protective in TBI. We tested the effects of acute administration of iAr on brain oedema, tissue micro-environmental changes, neurological functions, and structural outcome in a mouse model of TBI. Methods: Anaesthetised adult C57BL/6J mice were subjected to severe TBI by controlled cortical impact. Ten minutes after TBI, the mice were randomised to 24 h treatments with iAr 70%/O2 30% or air (iCtr). Sensorimotor deficits were evaluated up to 6 weeks post-TBI by three independent tests. Cognitive function was evaluated by Barnes maze test at 4 weeks. MRI was done to examine brain oedema at 3 days and white matter damage at 5 weeks. Microglia/macrophages activation and functional commitment were evaluated at 1 week after TBI by immunohistochemistry. Results: iAr significantly accelerated sensorimotor recovery and improved cognitive deficits 1 month after TBI, with less white matter damage in the ipsilateral fimbria and body of the corpus callosum. Early changes underpinning protection included a reduction of pericontusional vasogenic oedema and of the inflammatory response. iAr significantly reduced microglial activation with increases in ramified cells and the M2-like marker YM1. Conclusions: iAr accelerates recovery of sensorimotor function and improves cognitive and structural outcome 1 month after severe TBI in adult mice. Early effects include a reduction of brain oedema and neuroinflammation in the contused tissue

    Intravenous infusion of human bone marrow mesenchymal stromal cells promotes functional recovery and neuroplasticity after ischemic stroke in mice

    No full text
    Transplantation of human bone marrow mesenchymal stromal cells (hBM-MSC) promotes functional recovery after stroke in animal models, but the mechanisms underlying these effects remain incompletely understood. We tested the efficacy of Good Manufacturing Practices (GMP) compliant hBM-MSC, injected intravenously 3.5 hours after injury in mice subjected to transient middle cerebral artery occlusion (tMCAo). We addressed whether hBM-MSC are efficacious and if this efficacy is associated with cortical circuit reorganization using neuroanatomical analysis of GABAergic neurons (parvalbumin; PV-positive cells) and perineuronal nets (PNN), a specialized extracellular matrix structure which acts as an inhibitor of neural plasticity. tMCAo mice receiving hBM-MSC, showed early and lasting improvement of sensorimotor and cognitive functions compared to control tMCAo mice. Furthermore, 5 weeks post-tMCAo, hBM-MSC induced a significant rescue of ipsilateral cortical neurons; an increased proportion of PV-positive neurons in the perilesional cortex, suggesting GABAergic interneurons preservation; and a lower percentage of PV-positive cells surrounded by PNN, indicating an enhanced plastic potential of the perilesional cortex. These results show that hBM-MSC improve functional recovery and stimulate neuroprotection after stroke. Moreover, the downregulation of "plasticity brakes" such as PNN suggests that hBM-MSC treatment stimulates plasticity and formation of new connections in the perilesional cortex
    corecore