19 research outputs found

    Hepcidin sequesters iron to sustain nucleotide metabolism and mitochondrial function in colorectal cancer epithelial cells

    Get PDF
    Colorectal cancer (CRC) requires massive iron stores, but the complete mechanisms by which CRC modulates local iron handling are poorly understood. Here, we demonstrate that hepcidin is activated ectopically in CRC. Mice deficient in hepcidin specifically in the colon tumour epithelium, compared with wild-type littermates, exhibit significantly diminished tumour number, burden and size in a sporadic model of CRC, whereas accumulation of intracellular iron by deletion of the iron exporter ferroportin exacerbates these tumour parameters. Metabolomic analysis of three-dimensional patient-derived CRC tumour enteroids indicates a prioritization of iron in CRC for the production of nucleotides, which is recapitulated in our hepcidin/ferroportin mouse CRC models. Mechanistically, our data suggest that iron chelation decreases mitochondrial function, thereby altering nucleotide synthesis, whereas exogenous supplementation of nucleosides or aspartate partially rescues tumour growth in patient-derived enteroids and CRC cell lines in the presence of an iron chelator. Collectively, these data suggest that ectopic hepcidin in the tumour epithelium establishes an axis to sequester iron in order to maintain the nucleotide pool and sustain proliferation in colorectal tumours

    Maternal iron deficiency perturbs embryonic cardiovascular development in mice.

    Get PDF
    Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women

    Iron Deficiency as a Therapeutic Target in Cardiovascular Disease

    No full text
    Iron deficiency is the most common nutritional disorder in the world. It is prevalent amongst patients with cardiovascular disease, in whom it is associated with worse clinical outcomes. The benefits of iron supplementation have been established in chronic heart failure, but data on their effectiveness in other cardiovascular diseases are lacking or conflicting. Realising the potential of iron therapies in cardiovascular disease requires understanding of the mechanisms through which iron deficiency affects cardiovascular function, and the cell types in which such mechanisms operate. That understanding has been enhanced by recent insights into the roles of hepcidin and iron regulatory proteins (IRPs) in cellular iron homeostasis within cardiovascular cells. These studies identify intracellular iron deficiency within the cardiovascular tissue as an important contributor to the disease process, and present novel therapeutic strategies based on targeting the machinery of cellular iron homeostasis rather than direct iron supplementation. This review discusses these new insights and their wider implications for the treatment of cardiovascular diseases, focusing on two disease conditions: chronic heart failure and pulmonary arterial hypertension

    Iron deficiency and supplementation in heart failure

    No full text
    Non-anaemic iron deficiency (NAID) is a strategic target in cardiovascular medicine because of its association with a range of adverse effects in various conditions. Endeavours to tackle NAID in heart failure have yielded mixed results, exposing knowledge gaps in how best to define ‘iron deficiency’ and the handling of iron therapies by the body. To address these gaps, we harness the latest understanding of the mechanisms of iron homeostasis outside the erythron and integrate clinical and preclinical lines of evidence. The emerging picture is that current definitions of iron deficiency do not assimilate the multiple influences at play in patients with heart failure and, consequently, fail to identify those with a truly unmet need for iron. Additionally, current iron supplementation therapies benefit only certain patients with heart failure, reflecting differences in the nature of the unmet need for iron and the modifying effects of anaemia and inflammation on the handling of iron therapies by the body. Building on these insights, we identify untapped opportunities in the management of NAID, including the refinement of current approaches and the development of novel strategies. Lessons learned from NAID in cardiovascular disease could ultimately translate into benefits for patients with other chronic conditions such as chronic kidney disease, chronic obstructive pulmonary disease and cancer

    Iron deficiency and supplementation in heart failure

    No full text
    Non-anaemic iron deficiency (NAID) is a strategic target in cardiovascular medicine because of its association with a range of adverse effects in various conditions. Endeavours to tackle NAID in heart failure have yielded mixed results, exposing knowledge gaps in how best to define ‘iron deficiency’ and the handling of iron therapies by the body. To address these gaps, we harness the latest understanding of the mechanisms of iron homeostasis outside the erythron and integrate clinical and preclinical lines of evidence. The emerging picture is that current definitions of iron deficiency do not assimilate the multiple influences at play in patients with heart failure and, consequently, fail to identify those with a truly unmet need for iron. Additionally, current iron supplementation therapies benefit only certain patients with heart failure, reflecting differences in the nature of the unmet need for iron and the modifying effects of anaemia and inflammation on the handling of iron therapies by the body. Building on these insights, we identify untapped opportunities in the management of NAID, including the refinement of current approaches and the development of novel strategies. Lessons learned from NAID in cardiovascular disease could ultimately translate into benefits for patients with other chronic conditions such as chronic kidney disease, chronic obstructive pulmonary disease and cancer

    Iron-deficiency anemia results in transcriptional and metabolic remodeling in the heart toward a glycolytic phenotype

    No full text
    Iron deficiency is the most prevalent micronutrient disorder globally. When severe, iron deficiency leads to anemia, which can be deleterious to cardiac function. Given the central role of iron and oxygen in cardiac biology, multiple pathways are expected to be altered in iron-deficiency anemia, and identifying these requires an unbiased approach. To investigate these changes, gene expression and metabolism were studied in mice weaned onto an iron-deficient diet for 6 weeks. Whole-exome transcriptomics (RNAseq) identified over 1,500 differentially expressed genes (DEGs), of which 22% were upregulated and 78% were downregulated in the iron-deficient group, relative to control animals on an iron-adjusted diet. The major biological pathways affected were oxidative phosphorylation and pyruvate metabolism, as well as cardiac contraction and responses related to environmental stress. Cardiac metabolism was studied functionally using in vitro and in vivo methodologies. Spectrometric measurement of the activity of the four electron transport chain complexes in total cardiac lysates showed that the activities of Complexes I and IV were reduced in the hearts of iron-deficient animals. Pyruvate metabolism was assessed in vivo using hyperpolarized 13C magnetic resonance spectroscopy (MRS) of hyperpolarized pyruvate. Hearts from iron-deficient and anemic animals showed significantly decreased flux through pyruvate dehydrogenase and increased lactic acid production, consistent with tissue hypoxia and induction of genes coding for glycolytic enzymes and H+-monocarboxylate transport-4. Our results show that iron-deficiency anemia results in a metabolic remodeling toward a glycolytic, lactic acid-producing phenotype, a hallmark of hypoxia

    Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload

    No full text
    Iron-related disorders are among the most prevalent diseases worldwide. Systemic iron homeostasis requires hepcidin, a liver-derived hormone that controls iron mobilization through its molecular target ferroportin (FPN), the only known mammalian iron exporter. This pathway is perturbed in diseases that cause iron overload. Additionally, intestinal HIF-2α is essential for the local absorptive response to systemic iron deficiency and iron overload. Our data demonstrate a hetero-tissue crosstalk mechanism, whereby hepatic hepcidin regulated intestinal HIF-2α in iron deficiency, anemia, and iron overload. We show that FPN controlled cell-autonomous iron efflux to stabilize and activate HIF-2α by regulating the activity of iron-dependent intestinal prolyl hydroxylase domain enzymes. Pharmacological blockade of HIF-2α using a clinically relevant and highly specific inhibitor successfully treated iron overload in a mouse model. These findings demonstrate a molecular link between hepatic hepcidin and intestinal HIF-2α that controls physiological iron uptake and drives iron hyperabsorption during iron overload
    corecore