7 research outputs found

    Prenex Separation Logic with One Selector Field

    Get PDF
    International audienceWe show that infinite satisfiability can be reduced to finite satisfiabil-ity for all prenex formulas of Separation Logic with k ≥ 1 selector fields (SL k). This fact entails the decidability of the finite and infinite satisfiability problems for the class of prenex formulas of SL 1 , by reduction to the first-order theory of a single unary function symbol and an arbitrary number of unary predicate symbols. We also prove that the complexity of this fragment is not elementary recursive, by reduction from the first-order theory of one unary function symbol. Finally, we prove that the Bernays-Schönfinkel-Ramsey fragment of prenex SL 1 formulas with quantifier prefix in the language ∃ * ∀ * is PSPACE-complete

    Iterative Compression of End-to-End ASR Model using AutoML

    Full text link
    Increasing demand for on-device Automatic Speech Recognition (ASR) systems has resulted in renewed interests in developing automatic model compression techniques. Past research have shown that AutoML-based Low Rank Factorization (LRF) technique, when applied to an end-to-end Encoder-Attention-Decoder style ASR model, can achieve a speedup of up to 3.7x, outperforming laborious manual rank-selection approaches. However, we show that current AutoML-based search techniques only work up to a certain compression level, beyond which they fail to produce compressed models with acceptable word error rates (WER). In this work, we propose an iterative AutoML-based LRF approach that achieves over 5x compression without degrading the WER, thereby advancing the state-of-the-art in ASR compression

    Program Verification with Separation Logic

    Get PDF
    International audienceSeparation Logic is a framework for the development of modular program analyses for sequential, inter-procedural and concurrent programs. The first part of the paper introduces Separation Logic first from a historical, then from a program verification perspective. Because program verification eventually boils down to deciding logical queries such as the validity of verification conditions, the second part is dedicated to a survey of decision procedures for Separation Logic, that stem from either SMT, proof theory or automata theory. Incidentally we address issues related to decidability and computational complexity of such problems, in order to expose certain sources of intractability
    corecore