40 research outputs found
De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum)
<p>Abstract</p> <p>Background</p> <p>Transcriptome sequencing data has become an integral component of modern genetics, genomics and evolutionary biology. However, despite advances in the technologies of DNA sequencing, such data are lacking for many groups of living organisms, in particular, many plant taxa. We present here the results of transcriptome sequencing for two closely related plant species. These species, <it>Fagopyrum esculentum </it>and <it>F. tataricum</it>, belong to the order Caryophyllales - a large group of flowering plants with uncertain evolutionary relationships. <it>F. esculentum </it>(common buckwheat) is also an important food crop. Despite these practical and evolutionary considerations <it>Fagopyrum </it>species have not been the subject of large-scale sequencing projects.</p> <p>Results</p> <p>Normalized cDNA corresponding to genes expressed in flowers and inflorescences of <it>F. esculentum </it>and <it>F. tataricum </it>was sequenced using the 454 pyrosequencing technology. This resulted in 267 (for <it>F. esculentum</it>) and 229 (<it>F. tataricum</it>) thousands of reads with average length of 341-349 nucleotides. <it>De novo </it>assembly of the reads produced about 25 thousands of contigs for each species, with 7.5-8.2× coverage. Comparative analysis of two transcriptomes demonstrated their overall similarity but also revealed genes that are presumably differentially expressed. Among them are retrotransposon genes and genes involved in sugar biosynthesis and metabolism. Thirteen single-copy genes were used for phylogenetic analysis; the resulting trees are largely consistent with those inferred from multigenic plastid datasets. The sister relationships of the Caryophyllales and asterids now gained high support from nuclear gene sequences.</p> <p>Conclusions</p> <p>454 transcriptome sequencing and <it>de novo </it>assembly was performed for two congeneric flowering plant species, <it>F. esculentum </it>and <it>F. tataricum</it>. As a result, a large set of cDNA sequences that represent orthologs of known plant genes as well as potential new genes was generated.</p
Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord
BACKGROUND: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. METHODOLOGY/PRINCIPAL FINDINGS: We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. CONCLUSIONS/SIGNIFICANCE: We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord
Observation of the electromagnetic field effect via charge-dependent directed flow in heavy-ion collisions at the Relativistic Heavy Ion Collider
The deconfined quark-gluon plasma (QGP) created in relativistic heavy-ion
collisions enables the exploration of the fundamental properties of matter
under extreme conditions. Non-central collisions can produce strong magnetic
fields on the order of Gauss, which offers a probe into the
electrical conductivity of the QGP. In particular, quarks and anti-quarks carry
opposite charges and receive contrary electromagnetic forces that alter their
momenta. This phenomenon can be manifested in the collective motion of
final-state particles, specifically in the rapidity-odd directed flow, denoted
as . Here we present the charge-dependent measurements of
near midrapidities for , , and
in Au+Au and isobar (Ru+Ru and
Zr+Zr) collisions at 200 GeV, and
in Au+Au collisions at 27 GeV, recorded by the STAR detector at the
Relativistic Heavy Ion Collider. The combined dependence of the signal on
collision system, particle species, and collision centrality can be
qualitatively and semi-quantitatively understood as several effects on
constituent quarks. While the results in central events can be explained by the
and quarks transported from initial-state nuclei, those in peripheral
events reveal the impacts of the electromagnetic field on the QGP. Our data put
valuable constraints on the electrical conductivity of the QGP in theoretical
calculations
Hyperon polarization along the beam direction relative to the second and third harmonic event planes in isobar collisions at = 200 GeV
The polarization of and hyperons along the beam
direction has been measured relative to the second and third harmonic event
planes in isobar Ru+Ru and Zr+Zr collisions at = 200 GeV. This
is the first experimental evidence of the hyperon polarization by the
triangular flow originating from the initial density fluctuations. The
amplitudes of the sine modulation for the second and third harmonic results are
comparable in magnitude, increase from central to peripheral collisions, and
show a mild dependence. The azimuthal angle dependence of the
polarization follows the vorticity pattern expected due to elliptic and
triangular anisotropic flow, and qualitatively disagree with most hydrodynamic
model calculations based on thermal vorticity and shear induced contributions.
The model results based on one of existing implementations of the shear
contribution lead to a correct azimuthal angle dependence, but predict
centrality and dependence that still disagree with experimental
measurements. Thus, our results provide stringent constraints on the thermal
vorticity and shear-induced contributions to hyperon polarization. Comparison
to previous measurements at RHIC and the LHC for the second-order harmonic
results shows little dependence on the collision system size and collision
energy.Comment: 6 pages, 5 figures, Published in Physical Review Letter
Event-by-event correlations between () hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at from STAR
Global polarizations () of () hyperons have been
observed in non-central heavy-ion collisions. The strong magnetic field
primarily created by the spectator protons in such collisions would split the
and global polarizations (). Additionally, quantum chromodynamics (QCD) predicts
topological charge fluctuations in vacuum, resulting in a chirality imbalance
or parity violation in a local domain. This would give rise to an imbalance
() between left- and right-handed
() as well as a charge separation along the magnetic field,
referred to as the chiral magnetic effect (CME). This charge separation can be
characterized by the parity-even azimuthal correlator () and
parity-odd azimuthal harmonic observable (). Measurements of
, , and have not led to definitive
conclusions concerning the CME or the magnetic field, and has not
been measured previously. Correlations among these observables may reveal new
insights. This paper reports measurements of correlation between and
, which is sensitive to chirality fluctuations, and correlation
between and sensitive to magnetic field in Au+Au
collisions at 27 GeV. For both measurements, no correlations have been observed
beyond statistical fluctuations.Comment: 10 pages, 10 figures; paper from the STAR Collaboratio
Tomography of Ultra-relativistic Nuclei with Polarized Photon-gluon Collisions
A linearly polarized photon can be quantized from the Lorentz-boosted
electromagnetic field of a nucleus traveling at ultra-relativistic speed. When
two relativistic heavy nuclei pass one another at a distance of a few nuclear
radii, the photon from one nucleus may interact through a virtual
quark-antiquark pair with gluons from the other nucleus forming a short-lived
vector meson (e.g. ). In this experiment, the polarization was
utilized in diffractive photoproduction to observe a unique spin interference
pattern in the angular distribution of decays.
The observed interference is a result of an overlap of two wave functions at a
distance an order of magnitude larger than the travel distance
within its lifetime. The strong-interaction nuclear radii were extracted from
these diffractive interactions, and found to be fm () and fm (), larger than the nuclear charge
radii. The observable is demonstrated to be sensitive to the nuclear geometry
and quantum interference of non-identical particles
Observation of Global Spin Alignment of and Vector Mesons in Nuclear Collisions
The strong force, as one of the four fundamental forces at work in the
universe, governs interactions of quarks and gluons, and binds together the
atomic nucleus. Notwithstanding decades of progress since Yukawa first
developed a description of the force between nucleons in terms of meson
exchange, a full understanding of the strong interaction remains a major
challenge in modern science. One remaining difficulty arises from the
non-perturbative nature of the strong force, which leads to the phenomenon of
quark confinement at distance scales on the order of the size of the proton.
Here we show that in relativistic heavy-ion collisions, where quarks and gluons
are set free over an extended volume, two species of produced vector (spin-1)
mesons, namely and , emerge with a surprising pattern of global
spin alignment. In particular, the global spin alignment for is
unexpectedly large, while that for is consistent with zero. The
observed spin-alignment pattern and magnitude for the cannot be
explained by conventional mechanisms, while a model with strong force fields
accommodates the current data. This is the first time that the strong force
field is experimentally supported as a key mechanism that leads to global spin
alignment. We extract a quantity proportional to the intensity of the field of
the strong force. Within the framework of the Standard Model, where the strong
force is typically described in the quark and gluon language of Quantum
Chromodynamics, the field being considered here is an effective proxy
description. This is a qualitatively new class of measurement, which opens a
new avenue for studying the behaviour of strong force fields via their imprint
on spin alignment