108 research outputs found

    Iodine status of Queensland children and the associations with diet and thyroid function

    Get PDF

    Deciphering Non-coding RNAs in Cardiovascular Health and Disease

    Get PDF
    After being long considered as ā€œjunkā€ in the human genome, non-coding RNAs (ncRNAs) currently represent one of the newest frontiers in cardiovascular disease (CVD) since they have emerged in recent years as potential therapeutic targets. Different types of ncRNAs exist, including small ncRNAs that have fewer than 200 nucleotides, which are mostly known as microRNAs (miRNAs), and long ncRNAs that have more than 200 nucleotides. Recent discoveries on the role of ncRNAs in epigenetic and transcriptional regulation, atherosclerosis, myocardial ischemia/reperfusion (I/R) injury and infarction (MI), adverse cardiac remodeling and hypertrophy, insulin resistance, and diabetic cardiomyopathy prompted vast interest in exploring candidate ncRNAs for utilization as potential therapeutic targets and/or diagnostic/prognostic biomarkers in CVDs. This review will discuss our current knowledge concerning the roles of different types of ncRNAs in cardiovascular health and disease and provide some insight on the cardioprotective signaling pathways elicited by the non-coding genome. We will highlight important basic and clinical breakthroughs that support employing ncRNAs for treatment or early diagnosis of a variety of CVDs, and also depict the most relevant limitations that challenge this novel therapeutic approach

    Stochastic memristive quaternion-valued neural networks with time delays: An analysis on mean square exponential input-to-state stability

    Full text link
    In this paper, we study the mean-square exponential input-to-state stability (exp-ISS) problem for a new class of neural network (NN) models, i.e., continuous-time stochastic memristive quaternion-valued neural networks (SMQVNNs) with time delays. Firstly, in order to overcome the difficulties posed by non-commutative quaternion multiplication, we decompose the original SMQVNNs into four real-valued models. Secondly, by constructing suitable Lyapunov functional and applying Itoˆ’s formula, Dynkin’s formula as well as inequity techniques, we prove that the considered system model is mean-square exp-ISS. In comparison with the conventional research on stability, we derive a new mean-square exp-ISS criterion for SMQVNNs. The results obtained in this paper are the general case of previously known results in complex and real fields. Finally, a numerical example has been provided to show the effectiveness of the obtained theoretical results

    Study on Web-Site Attributes and Predatory Efficiency of Dark Tetragnathid Spider in Point Calimere Wildlife and Bird Sanctuary

    Get PDF
    Abstract. Spiders represent one of the most abundant components of the predatory arthropods in terrestrial ecosystem. Their effectiveness at restricting pest populations, both alone and as part of natural enemy complex has well demonstrated in many countries. The web, web-site attributes and predatory efficiency of Dark Tetragnathid Spider Tetragnatha mandibulata were assessed in Point Calimere Wildlife and Bird Sanctuary between August 2015 and March 2016. In the present study, the spiders used limited number of plants species. The relationship between web architecture and web-site attributes was estimated using Pearson's correlation. Number of spiders recorded in the web showed the positive correlation with web horizontal and vertical length of the capture areas (p<0.05). Similarly, the web circumference showed the positive interaction with plant height and canopy width (p<0.05), which clearly indicated the importance of vegetations across the webs of Dark Tetragnathid Spider. Further, the microhabitat selection and utilization could also be impacted by non-trophic factors like structural features of plants that provide architectural supports to spiders. A total of 4620 insect pests comprising seven orders were entangled by the webs of dark tetragnathid spiders. Number of spiders in the web were positively correlated with number of insect pests (p<0.05), which clearly explained that the Dark Tetragnathid spiders restricting pest populations and therefore they are considered as useful organism in biological control

    Larvicidal activity of Ramalina usnea lichen against Aedes aegypti

    Get PDF
    AbstractThe larvicidal activity of the methanol extract, fractions and compounds 2-hydroxy-4-methoxy-6-propyl-methyl benzoate and (+)-usnic acid identified from the lichen Ramalina usnea (L.) R. Howe, Ramalinaceae, was tested against the third instar larvae of the Aedes aegypti mosquito. The methanol extract and three fractions showed activity, killing 100% and 96.6% of the larvae at a concentration of 150Ī¼g/ml at 24h. The isolated compounds, 2-hydroxy-4-methoxy-6-propyl-methyl benzoate and the (+)-usnic acid showed larvicidal activity, presenting LC50 values of 4.85 and 4.48Ī¼g/ml, respectively. This is the first study of its kind reporting the larvicidal activity against the A. aegypti mosquito with compound (1)

    Reperfusion Therapy with Rapamycin Attenuates Myocardial Infarction through Activation of AKT and ERK

    Get PDF
    Prompt coronary reperfusion is the gold standard for minimizing injury following acute myocardial infarction. Rapamycin, mammalian target of Rapamycin (mTOR) inhibitor, exerts preconditioning-like cardioprotective effects against ischemia/reperfusion (I/R) injury. We hypothesized that Rapamycin, given at the onset of reperfusion, reduces myocardial infarct size through modulation of mTOR complexes. Adult C57 male mice were subjected to 30ā€‰min of myocardial ischemia followed by reperfusion for 1 hour/24 hours. Rapamycin (0.25ā€‰mg/kg) or DMSO (7.5%) was injected intracardially at the onset of reperfusion. Post-I/R survival (87%) and cardiac function (fractional shortening, FS: 28.63Ā±3.01%) were improved in Rapamycin-treated mice compared to DMSO (survival: 63%, FS: 17.4Ā±2.6%). Rapamycin caused significant reduction in myocardial infarct size (IS: 26.2Ā±2.2%) and apoptosis (2.87Ā±0.64%) as compared to DMSO-treated mice (IS: 47.0Ā±2.3%; apoptosis: 7.39Ā±0.81%). Rapamycin induced phosphorylation of AKT S473 (target of mTORC2) but abolished ribosomal protein S6 phosphorylation (target of mTORC1) after I/R. Rapamycin induced phosphorylation of ERK1/2 but inhibited p38 phosphorylation. Infarct-limiting effect of Rapamycin was abolished with ERK inhibitor, PD98059. Rapamycin also attenuated Bax and increased Bcl-2/Bax ratio. These results suggest that reperfusion therapy with Rapamycin protects the heart against I/R injury by selective activation of mTORC2 and ERK with concurrent inhibition of mTORC1 and p38

    Characterization of a murine model of monocrotaline pyrrole-induced acute lung injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New animal models of chronic pulmonary hypertension in mice are needed. The injection of monocrotaline is an established model of pulmonary hypertension in rats. The aim of this study was to establish a murine model of pulmonary hypertension by injection of the active metabolite, monocrotaline pyrrole.</p> <p>Methods</p> <p>Survival studies, computed tomographic scanning, histology, bronchoalveolar lavage were performed, and arterial blood gases and hemodynamics were measured in animals which received an intravenous injection of different doses of monocrotaline pyrrole.</p> <p>Results</p> <p>Monocrotaline pyrrole induced pulmonary hypertension in Sprague Dawley rats. When injected into mice, monocrotaline pyrrole induced dose-dependant mortality in C57Bl6/N and BALB/c mice (dose range 6ā€“15 mg/kg bodyweight). At a dose of 10 mg/kg bodyweight, mice developed a typical early-phase acute lung injury, characterized by lung edema, neutrophil influx, hypoxemia and reduced lung compliance. In the late phase, monocrotaline pyrrole injection resulted in limited lung fibrosis and no obvious pulmonary hypertension.</p> <p>Conclusion</p> <p>Monocrotaline and monocrotaline pyrrole pneumotoxicity substantially differs between the animal species.</p

    Conceptualization, 3D-CAD Modelling & Sorbent testing of CO2 CO2 Absorber for Electric Vehicle cabins

    No full text
    The energy consumption by the air-conditioning system of any vehicle can be reduced by 30%, this is immensely important electric vehicles. To prevent dangerous CO2 levels in the cabin released by the passengers through exhalation, cabin air atmosphere is diluted by the A/C using ambient air. This process consumes 10-40% more energy than only conditioning the cabin air continuously. The CO2 can be absorbed through a chemical reaction process and applied in electric vehicle cabins helping to reduce this energy consumption, and thus save valuable on board electric energy. Therefore, in this thesis a modular design concept for this absorber has been proposed by a ā€˜Pairwise comparisonā€™ between several technical criteria. The absorber module has also been dimensioned and a 3D Model created in InventorĀ©. In addition calcium hydroxide and soda lime have been investigated at lab scale under 100Ā°C for effective CO2 absorption. Using basic theoretical mass and energy balance, the mass of pure Ca(OH)2 required has been calculated. Based on the amount of sorbent, volume constraints of a vehicle and absorbent properties, the module has been dimensioned. Hereby, the absorption of CO2 exhaled by 2 passengers for a travel time of 2 hours has been estimated feasible
    • ā€¦
    corecore