12 research outputs found

    SYNTHESIS, MOLLUSCICIDALAND ANTIMICROBIAL POTENTIALITIES OF IRON TRIAD MONONUCLEAR METAL COMPLEXES INCORPORATING TRIDENTATE ASYMMETRICAL SCHIFF BASE LIGANDS CONTAINING SOFT SULFUR COORDINATING ATOM

    Get PDF
    Objective: This work aimed at synthesizing tridentates asymmetrical Schiff base ligands containing sulfur atom and using them for preparing metal complexes with the iron triad metals. The prepared compounds were assayed in vitro for antimicrobial potential and in vivo molluscicidal activity. Methods: The unsymmetrical tridentate Schiff bases (SL1, SL2, and SL3) were prepared using 2-aminothiophenol as primary amine and condensed with 2-carboxybenzaldehyde, 2-hydroxy-1-naphthaldehyde, and 7-formyl-8-hydroxyquinoline. These ligands were used in preparing metal complexes with iron triad metals. The synthesized Schiff base ligands and their corresponding metal complexes were characterized and their proposed structures were confirmed using different physical and spectroscopic analytical techniques. All ligands and their corresponding metal complexes were assayed against different bacterial and fungal strains using the agar disk-diffusion technique. The molluscicidal activity was performed according to the standard reported methods as cited in the literature and by observing the toxicity and lethal dose according to the WHO guidelines. Results: The synthesized ligands behave as tridentate (NOS) ligands and form mononuclear complexes with the general formula [M(SL)2] with an octahedral geometry around the central metal ion. Metal complexes were non-electrolytic in nature. The in vitro antibacterial and antifungal examination results showed weak activity of the ligands, and there was enhanced activity with the complexes. The in vivo molluscicidal activity of the tested compounds showed good activity. Conclusion: The targeted compounds were prepared successfully, characterized, and showed some biological activity but lower than the standard reference drugs

    Synthesis and characterization of copper(II), nickel(II) and zinc(II) complexes of macrobicyclic hexadentate schiff base ligand

    Get PDF
    435-436A macrobicyclic hexadenate schiff base ligand has been synthesised by the condensation of cyanauric chloride, hydrazine and terphthaldehyde and its Cu(lI), Ni(II) and Zn(II) metal complexes have been isolated. The ligand and their complexes have been characterised by elemental analysis, magnetic measurements, X-ray diffraction, reflectance and IR spectral studies. The X-ray diffraction studies show the number of molecules per unit cell n = 3 which is same for both macrobicyclic ligand and their complexes indicating that metal atom is inside the cage structure and coordinated by six nitrogen atoms which is supported by IR spectral data. The magnetic measurements show octahedral structure of the complexes

    Synthesis and characterization of macrocyclic quadridentate schiff base ligands and their copper(II), nickel (II) and zinc (II) complexes

    Get PDF
    241-242Macrocyclic quadridentate organic schiff base ligands (22-membered) have been synthesized and their macrocyclic complexes of Cu(II), Ni(II) and Zn(II) are isolated. The complexes have been characterized by elemental analysis, magnetic measurements, X-ray diffraction, reflectance and IR spectral studies. The X-ray diffraction studies show the number of molecules per unit cell n =6, which is same for both macrocyclic ligands and their complexes indicating that metal atom is inside the macrocyclic structure and coordinated by N2N2 sites which is supported by IR spectral data. The magnetic measurements show tetrahedral structure of the complexes

    Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands

    Get PDF
    Presently, there is increased attention and focus on heavy metals, which are becoming one of the most serious environmental problems due to their adverse health effects. These toxic heavy metals are not easily degraded and require removal from polluted water to protect people and the environment. The purpose of this work was to prepare two types of dithiocarbamate ligands, one aliphatic (diethyldithiocarbamate) and the other aromatic (diphenyldithiocarbamate), and to use them as chelators to remove Pb, Cd, Cu and Zn from polluted water. Dithiocarbamates were selected because they have good binding ability and can precipitate metal ions as complexes. The metal removal efficiency is compared between both ligands and also compared to the efficiency of activated carbon in an adsorption process to remove the same metals. The investigation results indicated that the diphenyldithiocarbamate ligand was more efficient in removing the studied metals than the diethyldithiocarbamate analogues. Additionally, the metal removal efficiency of the diphenyldithiocarbamate ligand was more effective than using the activated carbon method

    Colorimetric Detection of Multiple Metal Ions Using Schiff Base 1-(2-Thiophenylimino)-4-(N-dimethyl)benzene

    No full text
    In this paper, a Schiff base ligand 1-(2-thiophenylimino)-4-(N-dimethyl)benzene (SL1) bearing azomethine (>C=N-) and thiol (-SH) moieties capable of coordinating to metals and forming colored metal complexes was synthesized and examined as a colorimetric chemosensor. The sensing ability toward the metal ions of Cu2+, Cr3+, Fe2+ Ni2+, Co2+, Mg2+, Zn2+, Fe2+, Fe3+, NH4VO3 (V5+), Mn2+, Hg2+, Pb2+, and Al3+ was investigated in a mixture of H2O and dimethylformamide (DMF) solvent using the UV–Visible spectra monitoring method. The synthesized Schiff base ligand showed colorimetric properties with Cr3+, Fe2+, Fe3+, and Hg2+ ions, resulting in a different color change for each metal that could be identified easily with the naked eye. The UV–Vis spectra indicated a significant red shift (~69–288 nm) from the origin after the addition of the ligand to these metal ions, which may be due to ligand-to-metal charge-transfer (LMCT). On applying Job’s plot, it was indicated that the ligand binds to the metal ions in a 2:1 ligand-to-metal molar ratio. SL1 behaves as a bidentate ligand and binds through the N atom of the imine group and the S atom of the thiol group. The results indicate that the SL1 ligand is an appropriate coordination entity and can be developed for use as a chemosensor for the detection of Cr3+, Fe2+, Fe3+, and Hg2+ ions

    Preparation, Antimicrobial Activity and Docking Study of Vanadium Mixed Ligand Complexes Containing 4-Amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol and Aminophenol Derivatives

    No full text
    The synthesis of mixed-ligand complexes is considered an important strategy for developing new metal complexes of enhanced biological activity. This paper presents the synthesis, characterization, in vitro antimicrobial assessment, and theoretical molecular docking evaluation for synthesized oxidovanadium (V) complexes. The proposed structures of the synthesized compounds were proved using elemental and different spectroscopic analysis. The antimicrobial tests showed moderate activity of the compounds against the Gram-positive bacterial strains and the fungal yeast, whereas no activity was observed against the Gram-negative bacterial strains. The performance of density functional theory (DFT) was conducted to study the interaction mode of the targeted compounds with the biological system. Calculating the quantitative structure-activity relationship (QSPR) was performed depending on optimization geometries, frontier molecular orbitals (FMOs), and chemical reactivities for synthesized compounds. The molecular electrostatic potentials (MEPs) that were plotted link the interaction manner of synthesized compounds with the receptor. The molecular docking evaluation revealed that the examined compounds may possess potential antibacterial activity

    Qualitative and Quantitative Ethnobotanical Survey in Al Baha Province, Southwestern Saudi Arabia

    No full text
    The documentation of ethnobotanical knowledge is useful for biocultural conservation, preserving the diversity of plants, and drug development. The present study was carried out to compile and document the knowledge and uses of plants in Al Baha Province, Kingdom of Saudi Arabia (KSA). A total of 81 knowledgeable informants of different sexes, ages, and status levels were randomly selected and interviewed. The majority of the informants (63%) were > 60 years old. The collected data were qualitatively and quantitatively described using different quantitative indices [family importance value (FIV), use value (UV), and informant consensus factor (ICF)]. The fidelity level (FL), rank order priority (ROP), and relative popularity level (RPL) were determined for the plants (42 species) mentioned by at least three informants. A total of 97 plants belonging to 91 genera and 44 families were reported. The most commonly used parts were fruits (30.7%) and leaves (25.4%), whereas the most frequently used modes of preparation were maceration (24.7%) and direct application (23.3%). Most of the cited plants (49.5%) were traditionally used for gastrointestinal tract (GIT) disorders, whereas a few plants (6.2%) were used for the treatment of reproductive disorders. The most ethnobotanically important families were Lamiaceae (FIV = 0.35) and Apiaceae (FIV = 0.33). The highest UV was represented by Zingiber officinale (0.086) followed by Commiphora myrrha and Trigonella foenum-graecum (0.074). The level of agreement among the interviewees was remarkably high (ICF = 0.65–0.93) for plants that had the ability to cure infectious diseases. A low level of agreement (ICF = 0.33–0.48) was observed among the informants towards plants that were used to treat gastrointestinal tract, reproductive, hematological, and central nervous system disorders. There was a total and absolute disagreement (ICF = 0) among the informants regarding the plants that were used to treat renal, endocrine system, oncological/immunological, rheumatic, orthopedic, ear, nose, and throat (ENT), and inflammatory disorders. Six of the plants which were cited by three informants or more had a high healing efficacy (FL = 100) and forty species attained ROP values of 50 or above. Out of the 42 plants, 20 species were grouped as popular (RPL = 1), and the remaining plants (22 species) were unpopular (RPL < 1). Curcuma longa, which showed the highest ROP value (100), was used to enhance immunity. In conclusion, various plant species in Al Baha province were used by the local communities for the treatment of different health problems. The documentation of these plants could serve as a basis for further scientific research and conservation studies

    Natural Clay as a Low-Cost Adsorbent for Crystal Violet Dye Removal and Antimicrobial Activity

    No full text
    This investigation aimed at evaluating the efficiency of micro and nanoclays as a low-cost material for the removal of crystal violet (CV) dye from an aqueous solution. The impacts of various factors (contact time, pH, adsorbent dosage, temperature, initial dye concentration) on the adsorption process have been taken into consideration. Six micro and nanoclay samples were obtained by treating clay materials collected from different locations in the Albaha region, Saudi Arabia. Out of the six tested micro and nanoclays materials, two (NCQ1 and NCQ3) were selected based on the highest adsorption efficiency for complete experimentation. The morphology and structure of the selected micro and nanoclay adsorbents were characterized by various techniques: SEM-EDX, FTIR, XRF, XRD, and ICP-MS. The XRF showed that the main oxides of both nanoclays were SiO2, Al2O3, Fe2O3, K2O, CaO, and MgO, and the rest were impurities. All the parameters affecting the adsorption of CV dye were optimized in a batch system, and the optimized working conditions were an equilibrium time of 120 min, a dose of 30 mg, a temperature of 25 °C, and an initial CV concentration of 400 mg/L. The equilibrium data were tested using nonlinear isotherm and kinetic models, which showed that the Freundlich isotherm and pseudo-second-order kinetics gave the best fit with the experimental data, indicating a physico-chemical interaction occurred between the CV dye and both selected micro and nanoclay surfaces. The maximum adsorption capacities of NCQ1 and NCQ3 adsorbents were 206.73 and 203.66 mg/g, respectively, at 25 °C. The thermodynamic factors revealed that the CV dye adsorption of both micro and nanoclays was spontaneous and showed an exothermic process. Therefore, the examined natural micro and nanoclays adsorbents are promising effective adsorbents for the elimination of CV dye from an aqueous environment
    corecore