23 research outputs found

    Molecular mechanisms of hyperglycemia and cardiovascular-related events in critically ill patients: rationale for the clinical benefits of insulin therapy

    Get PDF
    Newly recognized hyperglycemia frequently occurs with acute medical illness, especially among patients with cardiovascular disease (CVD). Hyperglycemia has been linked to increased morbidity and mortality in critically ill patients, especially when it is newly recognized. Increased rates of reinfarction, rehospitalization, major cardiovascular events, and death in CVD patients have also been found. An expanding body of literature describes the benefits of normalizing hyperglycemia with insulin therapy in hospitalized patients. This article reviews several underlying mechanisms thought to be responsible for the association between hyperglycemia and poor outcomes in critically ill patients and those with cardiovascular events, as well as the biologic rationale for the benefits of insulin therapy in these patients

    Insulin therapy in critically ill patients

    Get PDF
    Hyperglycemia frequently occurs with acute medical illness, especially among patients with cardiovascular disease, and has been linked to increased morbidity and mortality in critically ill patients. Even patients who are normoglycemic can develop hyperglycemia in response to acute metabolic stress. An expanding body of literature describes the benefits of normalizing hyperglycemia with insulin therapy in hospitalized patients. As a result, both the American Diabetes Association and the American College of Endocrinology have developed guidelines for optimal control of hyperglycemia, specifically targeting critically ill, hospitalized patients. Conventional blood glucose values of 140–180 mg/dL are considered desirable and safely achievable in most patients. More aggressive control to <110 mg/dL remains controversial, but has shown benefits in certain patients, such as those in surgical intensive care. Intravenous infusion is often used for initial insulin administration, which can then be transitioned to subcutaneous insulin therapy in those patients who require continued insulin maintenance. This article reviews the data establishing the link between hyperglycemia and its risks of morbidity and mortality, and describes strategies that have proven effective in maintaining glycemic control in high-risk hospitalized patients

    Blockchain-Based Solution for COVID-19 Digital Medical Passports and Immunity Certificates

    Get PDF
    COVID-19 has emerged as a highly contagious disease which has caused a devastating impact across the world with a very large number of infections and deaths. Timely and accurate testing is paramount to an effective response to this pandemic as it helps identify infections and therefore mitigate (isolate/cure) them. In this paper, we investigate this challenge and contribute by presenting a blockchain-based solution that incorporates self-sovereign identity, re-encryption proxies, and decentralized storage, such as the interplanetary file systems (IPFS). Our solution implements digital medical passports (DMP) and immunity certificates for COVID-19 test-takers. We present smart contracts based on the Ethereum blockchain written and tested successfully to maintain a digital medical identity for test-takers that help in a prompt trusted response directly by the relevant medical authorities. We reduce the response time of the medical facilities, alleviate the spread of false information by using immutable trusted blockchain, and curb the spread of the disease through DMP. We present a detailed description of the system design, development, and evaluation (cost and security analysis) for the proposed solution. Since our code leverages the use of the on-chain events, the cost of our design is almost negligible. We have made our smart contract codes publicly available on Github

    A Blockchain-Based Approach for Drug Traceability in Healthcare Supply Chain

    Get PDF
    Healthcare supply chains are complex structures spanning across multiple organizational and geographical boundaries, providing critical backbone to services vital for everyday life. The inherent complexity of such systems can introduce impurities including inaccurate information, lack of transparency and limited data provenance. Counterfeit drugs is one consequence of such limitations within existing supply chains which not only has serious adverse impact on human health but also causes severe economic loss to the healthcare industry. Consequently, existing studies have emphasized the need for a robust, end-to-end track and trace system for pharmaceutical supply chains. Therein, an end-to-end product tracking system across the pharmaceutical supply chain is paramount to ensuring product safety and eliminating counterfeits. Most existing track and trace systems are centralized leading to data privacy, transparency and authenticity issues in healthcare supply chains. In this article, we present an Ethereum blockchain-based approach leveraging smart contracts and decentralized off-chain storage for efficient product traceability in the healthcare supply chain. The smart contract guarantees data provenance, eliminates the need for intermediaries and provides a secure, immutable history of transactions to all stakeholders. We present the system architecture and detailed algorithms that govern the working principles of our proposed solution. We perform testing and validation, and present cost and security analysis of the system to evaluate its effectiveness to enhance traceability within pharmaceutical supply chains

    Precision Medicine in Patients with Differential Diabetic Phenotypes: Novel Opportunities from Network Medicine

    No full text
    Introduction: Diabetes mellitus (DM) comprises differential clinical phenotypes ranging from rare monogenic to common polygenic forms, such as type 1 (T1DM), type 2 (T2DM), and gestational diabetes, which are associated with cardiovascular complications. Also, the high-risk prediabetic state is rising worldwide, suggesting the urgent need for early personalized strategies to prevent and treat a hyperglycemic state.Objective: We aim to discuss the advantages and challenges of Network Medicine approaches in clarifying disease-specific molecular pathways, which may open novel ways for repurposing approved drugs to reach diabetes precision medicine and personalized therapy.Conclusion: The interactome or protein-protein interactions (PPIs) is a useful tool to identify subtle molecular differences between precise diabetic phenotypes and predict putative novel drugs. Despite being previously unappreciated as T2DM determinants, the growth factor receptor-bound protein 14 (GRB14), calmodulin 2 (CALM2), and protein kinase C-alpha (PRKCA) might have a relevant role in disease pathogenesis. Besides, in silico platforms have suggested that diflunisal, nabumetone, niflumic acid, and valdecoxib may be suitable for the treatment of T1DM; phenoxybenzamine and idazoxan for the treatment of T2DM by improving insulin secretion; and hydroxychloroquine reduce the risk of coronary heart disease (CHD) by counteracting inflammation. Network medicine has the potential to improve precision medicine in diabetes care and enhance personalized therapy. However, only randomized clinical trials will confirm the clinical utility of network-oriented biomarkers and drugs in the management of DM

    The Domino Effect of Medical Errors

    No full text

    Blockchain for Patient Safety: Use Cases, Opportunities and Open Challenges

    No full text
    Medical errors are recognized as major threats to patient safety worldwide. Lack of streamlined communication and an inability to share and exchange data are among the contributory factors affecting patient safety. To address these challenges, blockchain can be utilized to ensure a secure, transparent and decentralized data exchange among stakeholders. In this study, we discuss six use cases that can benefit from blockchain to gain operational effectiveness and efficiency in the patient safety context. The role of stakeholders, system requirements, opportunities and challenges are discussed in each use case in detail. Connecting stakeholders and data in complex healthcare systems, blockchain has the potential to provide an accountable and collaborative milieu for the delivery of safe care. By reviewing the potential of blockchain in six use cases, we suggest that blockchain provides several benefits, such as an immutable and transparent structure and decentralized architecture, which may help transform health care and enhance patient safety. While blockchain offers remarkable opportunities, it also presents open challenges in the form of trust, privacy, scalability and governance. Future research may benefit from including additional use cases and developing smart contracts to present a more comprehensive view on potential contributions and challenges to explore the feasibility of blockchain-based solutions in the patient safety context
    corecore