21 research outputs found

    Synthetic analogues of the parasitic worm product ES-62 reduce disease development in in vivo models of lung fibrosis

    Get PDF
    Parasitic worms are receiving much attention as a potential new therapeutic approach to treating autoimmune and allergic conditions but concerns remain regarding their safety. As an alternative strategy, we have focused on the use of defined parasitic worm products and recently taken this one step further by designing drug-like small molecule analogues of one such product, ES-62, which is anti-inflammatory by virtue of covalently attached phosphorylcholine moieties. Previously, we have shown that ES-62 mimics are efficacious in protecting against disease in mouse models of rheumatoid arthritis, systemic lupus erythematosus and skin and lung allergy. Given the potential role of chronic inflammation in fibrosis, in the present study we have focused our attention on lung fibrosis, a debilitating condition for which there is no cure and which in spite of treatment slowly gets worse over time. Two mouse models of fibrosis - bleomycin-induced and LPS-induced - in which roles for inflammation have been implicated were adopted. Four ES-62 analogues were tested - 11a and 12b, previously shown to be active in mouse models of allergic and autoimmune disease and 16b and AIK-29/62 both of which are structurally related to 11a. All four compounds were found to significantly reduce disease development in both fibrosis models, as shown by histopathological analysis of lung tissue, indicating their potential as treatments for this condition

    Surfactant Protein-A Suppresses Eosinophil-Mediated Killing of Mycoplasma pneumoniae in Allergic Lungs

    Get PDF
    Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-A−/− allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A−/− mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage

    CTLA4-CD80/CD86 Interactions On Primary Mouse CD4+ T Cells Integrate Signal-Strength Information to Modulate Activation With Concanavalin A

    No full text
    The mechanisms by which concanavalin A (Con A), a lectin, activates T cells are poorly studied. A low dose of Con A is stimulatory for T cells, whereas a high dose of Con A results in suppression of proliferation and enhanced T cell death. The expression and functional roles of costimulatory receptors, CD28 and cytotoxic T-lymphocyte antigen 4 (CTLA4), and their ligands, CD80 and CD86, on primary mouse CD4+TCD4^+ T cells after activation with different doses of Con A were studied. CTLA4-CD80/CD86 interactions in this T:T cell activation model demonstrate distinct outcomes depending on the dose of Con A. CTLA4-CD80/CD86 interactions inhibit CD4+TCD4^+ T cell cycling and survival after activation with a suppressive dose of Con A by increasing oxidative stress and decreasing levels of BclXL. The enhanced CD4+TCD4^+ T cell death with a suppressive dose of Con A is dependent on excess H2O2H_2O_2 and nitric oxide but is independent of Fas and caspase activity. It is surprising that the increased proliferation of CD4+TCD4^+ T cells with a suppressive dose of Con A on blocking CTLA4-CD80/CD86 interactions is largely interleukin (IL)-2-independent but is cyclosporine A-sensitive. On activation with a stimulatory dose of Con A, CTLA4-CD80/CD86 interactions enhance T cell activation and survival by reducing the production of reactive oxygen species, increasing IL-2 and BclXL levels. Here IL-10 but not transforming growth factor- \beta plays a functional role. In summary, CTLA4-CD80/CD86 interactions on T cells integrate signal strength, based on the dose of Con A, to enhance or inhibit primary mouse CD4+TCD4^+ T cell cycling and survival

    Role of CD80, CD86, and CTLA4 on mouse CD4+TCD4^+ T lymphocytes in enhancing cell-cycle progression and survival after activation with PMA and ionomycin

    No full text
    Cell surface interactions between the T cell costimulatory receptors, CD28 and cytotoxic T-lymphocyte antigen-(CTLA4), with their cognate ligands, CD80 and CD86, on antigen-presenting cells play an important role in T cell activation. Although CD80 and CD86 are induced on T cells after activation, not much is known about their role in modulating T cell function. We show that CD80, CD86, and CTLA4 are induced on purified CD4 T cells after in vitro activation with phorbol 12-myristate 13-acetate (PMA) and ionomycin,and they play an essential role for proliferation and survival. Blockade of CTLA4-CD80/CD86 interactions greatly reduces PMA and ionomycin-mediated mouse CD4 T cell activation. The three key features of this inhibition of activation are: First,late events in T cell activation (after 18 h) are affected; second, these cells do not undergo anergy; and third, CD4CD25 regulatory T cells are not responsible. Activation of T cells with PMA and ionomycin together with CTLA4-CD80/CD86 blockade results in decreased induction of CD25 and Bcl-XL, reduced interleukin (IL)-2, and enhanced transforming growth factor- (TGF-) production.Furthermore, extended CTLA4-CD80/CD86 blockade results in decreased cell-cycle progression and enhanced apoptosis in a large proportion of cells. This inhibition of T cell proliferation can be rescued completely with anti-CD28 or IL-2 and partially with TGF- antagonists. This study reveals a functional role for CD80, CD86,and CTLA4 on CD4 T lymphocytes and sheds light on the mechanisms by which these molecules enhance activation and survival with PMA and ionomycin. J. Leukoc. Biol. 72: 921-931; 2002

    Modulation of cell cycle progression by CTLA4-CD80/CD86 interactions on CD4+TCD4^+T cells depends on strength of the CD3 signal: critical role for IL-2

    No full text
    Cytotoxic T-lymphocyte antigen 4 (CTLA4) is a well-studied T cell costimulatory receptor that is known to inhibit T cell activation. In this study, the relationship between strength of the first signal and costimulatory interactions on primary mouse CD4+CD4^+ T cells was investigated. CTLA4-CD80/CD86 interactions differentially modulate T cell cycling based on the mode of CD3 signal: Activation with plate-bound (pb) anti-CD3 generates a strong signal compared with a weak signal with soluble (sol) anti-CD3, resulting in approximately sevenfold higher amounts of interleukin (IL)-2 and an increase in cell cycling. Activation of T cells with sol anti-CD3 (weak signal) together with CTLA4-CD80/CD86 blockade lowers IL-2 production and cell cycling, demonstrating an enhancing role for these interactions. Conversely, blockade of CTLA4-CD80/CD86 interactions on T cells activated with pb anti-CD3 (strong signal) increases proliferation, which is consistent with CTLA4 as a negative regulator. Also, coculture of T cells with Chinese hamster ovary cells expressing CD80 or CD86 demonstrates that the strength of the primary signal plays an important role. It is important that modulation of IL-2 amounts leads to distinct alterations in the functional effects of CTLA4-CD80/CD86 interactions. On increasing IL-2 amounts, activation of T cells stimulated with sol anti-CD3 (weak signal) and CTLA4-CD80/CD86 blockade is greater compared with control. Concurrently, neutralization of IL-2 greatly reduces activation of T cells stimulated with pb anti-CD3 (strong signal) and CTLA4-CD80/CD86 blockade compared with control. These results underscore the importance of strength of first signal, CTLA4-CD80/CD86 interactions, and IL-2 amounts in modulating primary CD4+CD4^+ T cell responses

    Rapid burst of H2O2 by plant growth regulators increases intracellular Ca2+ amounts and modulates CD4(+) T cell activation

    Get PDF
    The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H2O2 . In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca2+ concentrations Ca2+](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNF alpha and IFN gamma by CD4+ T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca2+ ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling. (C) 2010 Elsevier B.V. All rights reserved

    The Role of Surfactant Protein A in Bleomycin-induced Acute Lung Injury

    No full text
    Rationale: Surfactant protein A (SP-A) is a collectin family member that has multiple immunomodulatory roles in lung host defense. SP-A levels are altered in the bronchoalveolar lavage (BAL) fluid and serum of patients with acute lung injury and acute respiratory distress syndrome, suggesting the importance of SP-A in the pathogenesis of acute lung injury
    corecore