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Abstract 

Parasitic worms are receiving much attention as a potential new therapeutic approach 

to treating autoimmune and allergic conditions but concerns remain regarding their 

safety. As an alternative strategy, we have focused on the use of defined parasitic worm 

products and recently taken this one step further by designing drug-like small molecule 

analogues of one such product, ES-62, which is anti-inflammatory by virtue of covalently 

attached phosphorylcholine moieties.  Previously, we have shown that ES-62 mimics 

are efficacious in protecting against disease in mouse models of rheumatoid arthritis, 

systemic lupus erythematosus and skin and lung allergy. Given the potential role of 

chronic inflammation in fibrosis, in the present study we have focused our attention on 

lung fibrosis, a debilitating condition for which there is no cure and which in spite of 

treatment slowly gets worse over time. Two mouse models of fibrosis - bleomycin-

induced and LPS-induced - in which roles for inflammation have been implicated were 

adopted. Four ES-62 analogues were tested – 11a and 12b, previously shown to be 

active in mouse models of allergic and autoimmune disease and 16b and AIK-29/62 

both of which are structurally related to 11a. All four compounds were found to 

significantly reduce disease development in both fibrosis models, as shown by 

histopathological analysis of lung tissue, indicating their potential as treatments for this 

condition. 

 

Keywords: drug development; fibrosis; ES-62; immunomodulation; parasitic worm 

 

Abbreviations: ECM – extracellular matrix; PC – phosphorylcholine; SMA – small 

molecule analogue 
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1. Introduction 

During the last few decades, a striking increase in the incidence of allergic and 

autoimmune conditions has been noted in urban areas of the world (reviewed by Bach, 

2002). One hypothesis put forward to explain this is that decreased exposure to 

pathogens via for example, increased hygiene, use of antibiotics and vaccination, has 

resulted in the human immune system no longer being exposed to a range of 

organisms, which would normally impact on its development and regulation (the 

“Hygiene Hypothesis”) (Strachan, 1989). Amongst these organisms, particular attention 

has been paid to parasitic worms, as examples of inverse correlations observed 

between the incidence of worm infection and conditions like rheumatoid arthritis (Panda 

et al., 2013; Panda and Das, 2016) and systemic lupus erythematosus (Panda and Das, 

2016) are strongly supportive of a role for worms in protection against certain 

autoimmune conditions. The situation with respect to allergic conditions like asthma 

does not appear as clear-cut, with parameters such as species of worm parasite, 

parasite load and age of patient likely to play a role (reviewed by Santiago and Nutman, 

2016). Nevertheless, mouse model studies of allergy reveal that a wide range of worm 

species, extracts of worms and defined individual worm products can protect against the 

development of disease (reviewed by Rzepecka and Harnett, 2014). 

One particularly well-characterised worm product is ES-62, a secreted protein of the 

filarial nematode Acanthocheilonema viteae, which has anti-inflammatory properties by 

virtue of covalently attached phosphorylcholine (PC) residues (reviewed by Pineda et 

al., 2014). ES-62 is able to protect mice against ovalbumin-induced airway 

hypersensitivity in both acute (Melendez et al., 2007; Rzepecka et al., 2013) and 

chronic (Coltherd et al., 2016) models of airway hypersensitivity and protection in the 

chronic model is associated with reduction of airway remodeling. Pathological tissue 

remodeling is also a feature of fibrosis (reviewed by Duffield et al., 2013), a condition in 

which repetitive damage of tissue by some form of irritant results in dysregulation of the 

normal wound-healing response leading to deposition of extracellular matrix (ECM) and 

remodeled tissue. The previously characterized protective effects of ES-62 against 
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airway remodeling in the chronic ovalbumin-induced hypersensitivity model argue for 

assessment of its therapeutic potential against lung fibrosis. However, as a large, 

“foreign” protein it is potentially immunogenic and may have delivery-related issues. 

Hence, as an alternative approach we have generated a library of drug-like ES-62 small 

molecule analogues (SMAs) based around its active PC moiety (Al-Riyami et al., 2013). 

Our recent studies have investigated three SMAs termed 11a, 12b and 19o. The first 

two compounds, like ES-62, are able to inhibit proinflammatory cytokine production by 

macrophages (Al-Riyami et al., 2013) and are protective in acute (Rzepecka et al., 

2015a) and chronic (Coltherd et al., 2016) models of ovalbumin-induced airway 

hypersensitivity. Conversely 19o was found to have no effect on macrophage cytokine 

production (Al-Riyami et al., 2013) and although it has not been tested in the asthma 

models, it was found, unlike 11a and 12b, to be unable to prevent spontaneous kidney 

disease development in the MRL/lpr mouse model of systemic lupus erythematosus 

(Rodgers et al., 2015). Our examinations to date indicate that active SMAs like 11a and 

12b mimic a primary ES-62 mechanism of action in causing autophagolysosomal 

degradation of the TLR/IL-1R adaptor molecule MyD88 (Al-Riyami et al, 2013; 

Rzepecka et al, 2015b; Rodgers et al. 2015). Indeed, recently we have found that this 

reflects direct interaction between the SMAs and the TIR domain of MyD88 (Suckling et 

al. 2018).  

 

The aim of this study was thus to test the two active SMAs – 11a and 12b - and also 

two further structurally-related SMAs, 16b and AIK-29/62, against development of 

pulmonary fibrosis in two distinct mouse models – LPS and bleomycin-induced fibrosis. 

Bleomycin is a cytostatic drug and a chemotherapeutic antibiotic produced by the 

bacterium “Streptomyces verticillus” that is commonly employed in the treatment of 

cancer. As a side effect of its therapeutic use, repeated systemic administration of 

bleomycin induces chronic pulmonary inflammation in some patients that may progress 

to fibrosis (Moeller et al., 2008). Bleomycin causes injury which follows a pattern of 

acute neutrophilic inflammation and disruption of the alveolar capillary barrier that 

usually peaks between days 3–7, followed by resolution of inflammation and 
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development of a fibroproliferative phase. Bleomycin-induced pulmonary fibrosis is a 

well-established disease model for idiopathic pulmonary fibrosis and widely used in the 

investigation of therapeutic molecules. LPS, an endotoxin of Gram-negative bacteria is 

known to cause acute lung injury (ALI). LPS exerts its biological effects through Toll-like 

receptor 4 (TLR4) and promotes secretion of pro-fibrotic cytokines, including 

transforming growth factor-β1 (TGF-β1). LPS stimulation eventually results in the 

deposition of extracellular matrix (ECM): of note, therefore, we have previously found 

two of the ES-62 SMAs employed in the current study, 11a and 12b, to interfere with 

LPS-induced pro-inflammatory responses (e.g. cytokine production) by macrophages 

(Al-Riyami et al., 2013) and dendritic cells (Lumb et al., 2017) in vitro. 
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2. Materials & Methods 

2.1 Experimental Animals 

Female C57BL/6 mice (10-11 week old), with body weight range of 17-21 grams were 

procured from Charles River (USA).  Animals were housed under standard specific 

pathogen-free conditions in vented cages. A single comprehensive experiment, 

comprising LPS- and Bleomycin-induced fibrosis models, was conducted according to 

protocols approved by IAEC (Institutional Animal Ethics Committee), IAEC/JDC/2014/54 

at Jubilant Biosys, with mice acclimatized to these conditions for two weeks prior to 

dosing. Mice were randomized based on body weight, into groups (n=5/6 per group) 

such that mean body weights of animals in different groups were not statistically 

significant and variations within a group spanned less than 20%.  

 

2.2 Chemicals 
Bleomycin sulphate was purchased from Alfa Aesar (J60727); LPS (E. coli serotype 

055:B5; L2880), dexamethasone (dimethyl sulfoxide (DMSO) soluble), pepsin, DMSO, 

bovine serum albumin (BSA) and phosphate buffered saline (PBS) were purchased 

from Sigma. Bleomycin sulphate (50 µg per mouse) and LPS (40 µg per mouse) were 

prepared by dissolving in PBS immediately prior to use. ES-62 SMAs used in this 

investigation were 11a, 12b, 16b and AIK-29/62 and each was synthesised at the 

University of Strathclyde. 11a, 12b, and 16b have been described and employed 

previously (Al-Riyami et al., 2013; Rzepecka et al., 2015a); AIK-29/62 is a new 

compound (Fig. 1). The main stocks (100 mg/ml) were prepared in DMSO (D2650, 

Sigma) and stored at -80°C. The SMA sub-stocks (1 mg/ml) were prepared in DMSO 

and were stored in 4°C until use. At the time of the experiments, the SMAs were diluted 

1:200 with PBS and a dose volume of 200 µl injected subcutaneously on the scruff of 

the neck. The same DMSO concentration (0.5%) was maintained in the control PBS 

(“Vehicle”) group. Dexamethasone 0.4 mg/kg was prepared in PBS and injected by the 

intra-peritoneal route, as an internal disease protection control. 
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2.3 Sirius red Collagen assay 

The Sirius Red Collagen Detection Kit (catalog no. 9062) was purchased from 

Chondrex Inc, USA) and the assay was performed as per manufacturer’s instructions. 

Briefly, the left lobe of the lung (superior & inferior left lobe) was collected and flash 

frozen immediately in a sterile pre-weighed 1.5 ml Eppendorf tube containing 2 metal 

beads of 4 mm thickness and stored at -80°C until processed. For processing the 

samples, 300 µl of milli-Q water was added to promote lysis. Tissue lysis was performed 

on a pre-chilled metal block in a Geno grinder (Geno / Grinder® SPEX Sample Prep P 

2010) at 900 rpm for 2 min for 4 cycles. Pepsin (100 µl; from porcine gastric mucosa, 

P7000, Sigma) prepared as 1 mg/ml in 0.05 M acetic acid (supplied in Chrondrex Kit) 

was added to each sample tube. The contents were gently mixed and incubated 

overnight at 4°C in an end-to-end rotor, with ~20 µl of sample removed for protein 

estimation using the Bradford reagent from Biorad. The following day samples were 

centrifuged at 8,000 rpm for 10 min before transfer of 250 µl of the clear supernatant 

into a clear 1.ml Eppendorf tube. Sirius Red solution (500 µl) was added to the 

supernatant, and the sample vortexed and incubated overnight at 4°C. Collagen 

standards (starting conc. of 500 µg/ml) were prepared in 0.05% acetic acid as per 

manufacturer’s instructions, with 100 µl of standard solutions transferred into fresh 

tubes. Sirius Red solution (500 µl) was added to all the standard tubes, which were then 

vortexed and incubated overnight at 4°C. The next day standards and samples were 

centrifuged at 10,000 rpm for 25 minutes at 4°C and the supernatant discarded carefully 

without disturbing the pellet. The pellet was washed twice using 500 µl of wash solution 

before addition of 250 µl of extraction buffer and vortexing to completely dissolve the 

pellet. Samples (200 µl) were transferred to a 96-well plate, and the OD read at 510-550 

nm.  

2.4 Histopathological evaluation  

Mouse lung (right inferior lobe) tissues were processed for routine paraffin embedding 

and serial sections of 6 µm thickness were prepared. Slides were stained with 
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hematoxylin and eosin (H & E) for detailed examination of tissue pathology whilst the 

Richard Allan Gomori Trichrome staining kit (Thermo Scientific) was employed to 

assess the collagen content, visualised as blue fibers. The extent of disease severity 

was assessed using the modified Ashcroft scale (Hubmer et al., 2008) where the entire 

lung section was examined for pulmonary fibrotic changes and sections representative 

of the scoring system are shown in Fig. 2. This clinical scoring reflects the extent and 

severity of cellularity in the alveolar wall (interstitium); metaplastic cells lining the air 

spaces, including foci of honeycomb lung; the extent and severity of cellularity in the 

alveolar space (desquamation); interstitial “young connective tissue” interstitial fibrosis; 

honeycomb cysts; metaplastic smooth muscle in the stroma; myointimal mural 

thickening in the vessel walls; airway luminal granulation tissue; air space granulation 

tissue; airway wall inflammation; airway wall fibrosis, as indicated. 

 

2.5 Study Protocol  

This study comprised a single experiment with two arms, with the objectives being the 

investigation of bleomycin-and LPS-induced lung fibrotic changes. 70 animals were 

procured and randomized based on the study plan. Pulmonary fibrosis was induced 

either by a single dose of oropharyngeal instillation with 50 µg bleomycin sulphate 

(dissolved in 40 µl of PBS) or 40 µg of LPS (dissolved in 40 µl of PBS). Mice that were 

injected with PBS served as controls. The four test compounds were dosed at 0.05 

mg/kg and dexamethasone at 0.4 mg/kg. Animals from respective treatment groups 

were administered with vehicle or test compound/dexamethasone for 6 days a week 

and dexamethasone thrice weekly starting from day 0 to 7 for the LPS group and day 0 

to 13 for the bleomycin group. Mortality (if any), clinical signs, and body weight (3-4 

days weekly) were recorded. The animals were sacrificed on day 8 (LPS group) or day 

14 (bleomycin group), time-points chosen on the basis of our previous experiments 

analysing collagen deposition. Lung lobes were sampled according to the relevant 

assays (left lung lobes: superior and inferior for collagen assay; right superior and 

middle lobe as reserve and right inferior lobe for histopathology analysis) and tissue 
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weights were recorded. Lung lobes were analyzed for collagen levels and 

histopathological analysis. One mouse from the bleomycin-treated cohort was found 

dead on Day 12, presumably due to disease severity. One animal each from 

dexamethasone-treated (bleomycin-induced) and AIK-29/62 treated (LPS-induced) 

groups were found dead on the day of sensitization (day 0), presumably due to the 

challenges in recovery from anesthesia.  

 

 

2.6 Statistical Analysis 
All statistical analyses were performed using Graphpad Prism software, using a one-

way ANOVA or 2-way ANOVA analysis and Fisher’s least significance difference post-

test or Kruskal Wallis post-test where stated for the Ordinal Histopathology data.  

 
 
  



	
	
	
	

10	

3. Results  
3.1 Histopathological assessment of effect of ES-62 SMAs in models of lung 
fibrosis 
A single comprehensive experiment was undertaken involving the use of two different 

fibrosis models - LPS- and bleomycin-induced -  and four distinct SMAs.  

Histopathological analysis of lung tissues revealed that lung parenchyma of LPS and 

bleomycin disease groups display significant pathology with development of alveolar 

septa, widening and disturbance of alveolar structure, severe inflammatory cell 

infiltration, and excessive collagen deposition. By contrast, mice treated with 11a, 12b, 

16b, AIK-29/62 or dexamethasone showed substantial protection from LPS- and 

bleomycin-induced damage such as reduction in each of alveolar septa widening, 

inflammatory cell infiltration, fibroblast proliferation and excessive collagen deposition 

(Fig. 3A). Supporting this, the scoring of disease severity showed that whilst both the 

LPS- and Bleomycin-disease groups have scores significantly different to those of the 

vehicle mice, none of the treated groups (11a, 12b, 16b, AIK-29/62 or dexamethasone) 

displayed scores significantly different from the healthy mice (Fig. 3B). 
 

3.2 Effect of ES-62 SMAs on body weight and lung tissue weight in models of 
fibrosis 
Following an initial drop in body weight following treatment with LPS, the animals 

generally recovered over the duration of the experiment and ultimately, the administered 

compounds had little effect on the weight of the animals (Fig. 4). Treatment with 

bleomycin showed some evidence of causing a reduction in body weight although this 

did not reach statistical significance. Relative to the no disease control group, all of the 

LPS-treatment groups showed slightly elevated dry lung weights, which were not 

significantly decreased by any of the interventions, although those treated with AIK-

29/62 or dexamethasone were not significantly different from healthy controls. The lung 

tissue weights of diseased animals in the bleomycin groups treated with PBS, 11a or 

12b were also significantly higher when compared to the control group whereas 

treatment with each of SMA 16b and AIK-29/62 suppressed this (Fig. 5).  Indeed, the 
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lung weights of these two treatment groups and in addition dexamethasone were not 

significantly different from healthy controls. 

 

3.3. Effect of ES-62 SMAs on collagen deposition in models of fibrosis 

Fibrosis results from an abnormal wound-healing response following alveolar injury 

forming a scar. The fibroblasts involved in scarring have a myofibroblast phenotype 

characterized by α-smooth muscle actin (α-SMA) expression and increased secretion 

of collagen types I and III. The collagen content in fibrotic tissues was estimated using 

Sirius Red dye, which specifically binds to the [Gly-X-Y]n helical structure on fibrillar 

collagen (type I to V) but does not discriminate between collagen species and types.  

Collagen levels were estimated from the left superior and inferior lobes of mice and 

expressed as micrograms of collagen per milligram tissue (µg/mg). LPS and bleomycin 

both significantly increased the levels of collagen detected: administration of 0.05 mg/kg 

of compound AIK-29/62 or dexamethasone attenuated collagen deposition in the LPS-

treated mice as shown by statistically significant differences from the LPS-PBS control 

(Fig. 6). The other treatments had no statistically significant effect and likewise, none of 

the treatments were able to prevent bleomycin-induced collagen deposition.  
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4. Discussion 

 

Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix 

(ECM) components such as collagen and fibronectin in and around the inflamed or 

damaged area which can further lead to permanent scarring, organ malfunction and 

ultimately death (reviewed by Duffield et al., 2013). In this study, we investigated the 

protective effects of synthetic SMAs of the immunomodulatory parasitic worm product 

ES-62 against fibrosis. These SMAs are drug-like compounds that have previously been 

shown to protect against inflammatory exacerbations in an ovalbumin-dependent model 

of chronic asthma (Coltherd et al., 2016).  

 

As expected, both bleomycin and LPS caused fibrosis to develop in the lungs of treated 

mice. SMAs 11a and 12b, when tested in quantities analogous to those previously 

shown to protect against disease development in models of allergy and autoimmunity 

(Al-Riyami et al., 2013; Rzepecka et al., 2015a; Rzepecka et al., 2015b), were able to 

significantly reduce this and to a level comparable to the disease-active control 

compound, dexamethasone. The two compounds new to in vivo evaluation, SMAs 16b 

and AIK-29/62, are structurally related to SMA 11a and they too behaved in a similar 

manner to dexamethasone when tested in the model. 12b is rather different in chemical 

structure, being the only one of the four SMAs evaluated that can readily form a vinyl 

sulfone. As we discussed previously (Rzepecka et al., 2015b), because a vinyl sulfone 

has potential for additional biological activity to that related to ES-62 it is possible that 

this could contribute to the observed behavior of 12b in not reducing collagen 

deposition. In any case, all four compounds showed therapeutic potential for the 

treatment of fibrosis. Caution should be observed with respect to AIK-29/62 as there is 

some indication that it may be enhancing the reduction in body weight observed when 

employing bleomycin, although this was not statistically significant by the end of the 

experiment. At the same time, however, SMAs AIK-29/62 and 16b were able to 

significantly inhibit the observed increase in lung tissue weights observed in bleomycin-

treated groups. 
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To investigate their mechanism of action, we also measured the amount of collagen 

present in the lungs: whilst both LPS and bleomycin significantly increased collagen 

levels, only SMA AIK-29/62 and dexamethasone were able to significantly prevent this 

and only with respect to LPS treatment. Interestingly however, SMAs 11a and 16b also 

showed a reduction in the LPS model but this did not reach statistical significance. The 

undertaking of further experiments, by increasing the power of the analysis, could 

perhaps confirm whether they are truly having an effect in reducing collagen deposition. 

In any case, relating to this general absence of a significant effect with the SMAs, we 

had previously subjected 12b-exposed bone marrow-derived macrophages to 

microarray analysis (Rzepecka et al. 2015b) and noted no effect on expression of 

collagen genes such as col1a2 and col3a1. At the same time however, 9 of the genes 

present in the mouse fibrosis PCR array produced by Quiagen were affected. In eight of 

these cases the change was in a direction likely to inhibit fibrosis. Thus, there is 

decreased expression of the genes corresponding to 6 mediators that play a role in 

pulmonary fibrosis – CCR2 (Moore et al. 2001) – expression reduced 3.8-fold; IL-1β 

(Borthwick, 2016) – expression reduced 8.9-fold (most affected gene in the study); 

PDGFB (Abdollahi et al., 2005) – expression reduced 2.1-fold; TGFB1 Fernandez and 

Eickelberg, 2012) – expression reduced 1.6-fold; TGFB3 (Emblom-Callahan et al., 

2010) – expression reduced 2.1-fold and NFκB1 (Christman, Sadikot and Blackwell, 

2000) – expression reduced 1.8-fold. At the same time, there is increased expression 

(2.9-fold) of Mmp13, an enzyme found to limit the overall magnitude of ECM build up in 

the fibrotic lung (Nkyimbeng et al., 2013) and uPa (2.6-fold), which would be expected 

to result in increased collagen degradation and tissue fibrogenesis (Ghosh and 

Vaughan, 2012) The only gene that showed a change in expression that is perhaps 

more difficult to reconcile with a protective role against fibrosis is CCL3 L1/L3 (1.7-fold 

increase) as the chemokine CCL3 is considered to play a role in promoting fibrosis 

(Yang et al. 2011). Overall however, the changes in gene expression are clearly 

consistent with a protective effect against fibrosis and thus mirror the protective effects 

shown in the present study. 
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In summary, parasitic worm products are increasingly being considered as novel 

therapeutics for human illnesses associated with aberrant inflammatory responses 

(reviewed by Rzepecka and Harnett, 2014). We have recently taken this a step further 

via the production of synthetic drug-like SMAs of one of the best characterized of these 

molecules, ES-62 (Al-Riyami et al., 2013). In the current study, we demonstrate that 

these SMAs are effective in modulating key efficacy markers in a subset of fibrotic 

diseases. It should be noted however that a limitation of the study is that it comprises a 

single experiment. Although this was comprehensive, involving the use of two different 

fibrosis models and four distinct SMAs and with a sufficient number of animals per 

group to achieve statistical significance, the undertaking of further experiments will be 

necessary to confirm the existence of the protective effect and also to determine 

whether it is present in a therapeutic setting. Certainly, at this stage the SMAs appear to 

offer a novel approach to the treatment of fibrosis, a debilitating condition for which 

current therapies remain inadequate. With respect to obtaining a candidate drug based 

upon these and cited results, SMAs 11a and 12b do not have hERG or CYP inhibition 

liabilities but optimization will be required in terms of pharmacokinetic properties and 

dosing regime, for the treatment of fibrosis or other appropriate diseases.  

 

 

Funding: This research did not receive any specific grant from funding agencies in the 

public, commercial, or not-for-profit sectors.   
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Figure Legends 

 

Fig. 1. Structures and properties of the ES-62 SMAs.  
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Fig. 2. Representative images of the clinical scoring of fibrosis from LPS and 
Bleomycin treated groups. Lung histology shows H & E staining (left panels; 10X 

magnification) and Trichrome Gomori staining (right panels; 10X magnification; collagen 

is stained in blue). Scores 0, 1, 2, 3, 5 and 6 represent increases in disease severity. 

Slides with a score of 0, 3, and 5 are from the LPS-treated group, whilst those with a 

score of 1, 2, and 6 are from the Bleomycin treatment group. In this study, we did not 

find tissue exhibiting a score representative of 4.   
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Fig. 3. Protection against fibrosis by SMAS 11a, 12b, 61 and AIK-29/62. A. Lung 

histology shows 2 representative images of Trichrome Gomori (10X magnification) 

staining of the lungs from each group. Excessive collagen deposition and inflammatory 

cell infiltration were visible in the disease groups. B. Lung histopathological scores of 

the groups where data are represented as median ± interquartile range values (n=5 LPS 

[except 62, n=4]; n=6 bleomycin [except PBS n=5 and dexamethasone (Dex) n=4]). 

Analysis by 1-way ANOVA and Kruskal Wallis post-test showed that LPS and bleomycin 

induce significant increases (*p<0.05; **p<0.001) in disease severity compared to the 

no-disease control group (Vehicle) and #, ## denotes the significant decrease (#p<0.05, 

##p<0.01) in disease severity resulting from treatment with the SMAs compared to the 

disease control (PBS) group. AIK-29/62 is denoted by “62”. None of the animals treated 

with the SMAs or dexamethasone showed scores significantly different to the healthy 

control cohort. 
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Fig. 4: Body weight representation from LPS (A) and Bleomycin (B) groups. Data 
are presented as mean ± SEM (n=5 for LPS groups, except for “62” group n=4; n=6 for 
bleomycin groups, except for PBS group n=5 and for Dex group n=4). Data were 
analysed by 2-way ANOVA.  

For LPS:  

Day 1: ***p<0.001 for LPS + PBS, LPS + 11a, LPS + 12b, LPS + 16b; **p<0.01 for LPS 
+ AIK-29/62 (denoted by “62”) and *p<0.05 for LPS + Dex, all versus Vehicle, i.e., no 
LPS-induced disease 

Day 3: **p<0.01 for LPS + PBS and *p<0.05 for LPS + 11a, LPS + 12b, LPS + 16b, all 
versus Vehicle  

Day 8: *p<0.05 for LPS + PBS and LPS + Dex, versus Vehicle  

For bleomycin 

Day1: *p<0.05 for bleomycin + 16b and bleomycin + AIK-29/62 (denoted by “62”.) 
versus Vehicle, i.e., no bleomycin-induced disease 

Day 3: *p<0.05 for bleomycin + AIK-29/62 (denoted by “62”) versus Vehicle  

Day 6: *p<0.05 for bleomycin + AIK-29/62 (denoted by “62”) versus Vehicle)  

Day 8: *p<0.05 for blemycin + PBS, bleomycin + 11a, blemycin + 12b, bleomycin + Dex 
and ***p<0.001 for bleomycin + AIK-29/62 (denoted by “62”) versus Vehicle. 
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Fig. 5: Tissue weights of left lung lobe from LPS- and bleomycin-groups. Data are 

represented as mean ± SEM (n=5 LPS, except for AIK-29/62 [denoted by “62”, n=4] as 

one-treated mouse died on d1; n=6 bleomycin, except for PBS=5 as one mouse died on 

d13 and for Dex =4 as one mouse died on d1). Significant increases (*p<0.05; **p<0.01 

and ***p<0.001) in tissue weight compared to Vehicle are indicated whilst suppression 

of LPS- or bleomycin responses by treatments are denoted by #p<0.05 as analysed by 

1-way ANOVA. 
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Fig. 6: Analysis of collagen concentration per left lung lobe from cohorts of LPS- 
and bleomycin-induced fibrosis, represented in µg per mg of lung tissue. Data are 

represented as mean ± SEM (n=5 LPS, except for AIK-29/62 [denoted by “62”, n=4] as 

one-treated mouse died on d1; n=6 bleomycin, except for PBS=5 as one mouse died 

d13 and for Dex =4 as one mouse died d1). Significant increases (*p<0.05; **p<0.01) 

compared to Vehicle are indicated whilst suppression of LPS- or Bleomycin responses 

by particular treatments are denoted by #p<0.05 as analysed by 1-way ANOVA. 

 

 


