16 research outputs found

    Heat knockdown resistance and chill-coma recovery as correlated responses to selection on mating success at high temperature in Drosophila buzzatii

    Get PDF
    Reproduction and related traits such as mating success are strongly affected by thermal stress. We tested direct and correlated responses to artificial selection in replicated lines of Drosophila buzzatii that were selected for mating success at high temperature. Knockdown resistance at high temperature (KRHT) and chill-coma recovery (CCR) were tested as correlated selection responses. Virgin flies were allowed to mate for four hours at 33°C in three replicated lines (S lines) to obtain the selected flies and then returned at 25°C to lay eggs. Other three replicated lines were maintained at 25°C without any selection as control (C lines). After 15 selection generations, KRHT and CCR were measured. Both traits were assessed in flies that did not receive any hardening pretreatments as well as in flies that were either heat or cold hardened. Thermotolerance traits showed significant correlated responses with higher KRHT in S than in C lines, both with a heat-hardening pretreatment and without a heat-hardening pretreatment. CCR time was longer in S than in C lines both with a cold-hardening pretreatment and without a cold-hardening pretreatment. Hardening treatments improved both KRHT and CCR in all cases excepting KRHT in C lines. Overall, KRHT and CCR showed an antagonistic pattern of correlated responses to our selection regime, suggesting either pleiotropy or tightly linked trait-specific genes partially affecting KRHT and CCR.Fil: Stazione, Leonel Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Norry, Fabian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Gomez, Federico Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Sambucetti, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Heat-stress survival in the pre-adult stage of the life cycle in an intercontinental set of recombinant inbred lines of Drosophila melanogaster

    Get PDF
    In insects, pre-adult stages of the life cycle are exposed to variation in temperature that may differ from that in adults. However, the genetic basis for adaptation to environmental temperature could be similar between the pre-adult and the adult stages of the life cycle. Here, we tested quantitative trait loci (QTL) for heat-stress survival in larvae of Drosophila melanogaster, with and without a mild-heat-stress pre-treatment. Two sets of recombinant inbred lines derived from lines artificially selected for high and low levels of knockdown resistance to high temperature in young flies were used as the mapping population. There was no apparent increase in heat-shock survival between heat-pretreated and non-pretreated larvae. There was a positive correlation between the two experimental conditions of heat-shock survival (with and without a heat pre-treatment) except for males from one set of lines. Several QTL were identified involving all three major chromosomes. Most QTL for larval thermotolerance overlapped with thermotolerance QTL identified in previous studies for adults, indicating that heat-stress resistance is not genetically independent between life cycle stages because of either linkage or pleiotropy. The sign of the effects of some QTL alleles differed both between the sexes and between life stages.Fil: Sambucetti, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Scannapieco, Alejandra Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Loeschcke, V.. University Aarhus; DinamarcaFil: Norry, Fabian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density

    Get PDF
    Survival of a potentially lethal high temperature stress is a genetically variable thermal adaptation trait in many organisms. Organisms cope with heat stress by basal or induced thermoresistance. Here, we tested quantitative trait loci (QTL) for heat stress survival (HSS) in Drosophila  melanogaster, with and without a cyclic heat-hardening pre-treatment, for flies that were reared at low (LD) or high (HD) density. Mapping populations were two panels of recombinant inbred lines (RIL), which were previously constructed from heat stress-selected stocks: RIL-D48 and  RIL-SH2, derived from backcrosses to stocks of low and high heat resistance, respectively. HSS increased with heat hardening in both LD and HD flies. In addition, HSS increased consistently with density in non-hardened flies. There was a significant interaction between heat hardening and density effects in RIL-D48. Several QTL were significant for both density and hardening  treatments. Many QTL overlapped with thermotolerance QTL identified for other traits in previous studies based on LD cultures only. However, three new QTL were found in HD only (cytological ranges: 12E–16F6; 30A3–34C2; 49C–50C). Previously found thermotolerance QTL were also significant for flies from HD cultures.Fil: Arias, Leticia Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sambucetti, Pablo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Scannapieco, Alejandra Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Loeschcke, Volker. Aarhus University. Aarhus Institute Of Advanced Studies.; DinamarcaFil: Norry, Fabian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentin

    An association test for survival to heat stress in larvae and adults in Drosophila melanogaster

    Get PDF
    In insects, survival to heat-stress (SHS) is a trait related to thermal adaptation (Hoffmann et al., 2003). SHS can increase by acclimation, as heat acclimation is the increase in thermotolerance due to either repeated or long-term exposures to heat stress (Hoffmann et al., 2003). In Drosophila melanogaster, previous work showed that both SHS and another trait of thermal adaptation, knockdown resistance to heat stress (KRHT), is influenced by several Quantitative Trait Loci (QTL) including one large-effect QTL in the middle of chromosome 2 (Norry et al., 2004, 2008, 2009; Morgan and Mackay 2006). Here we used a subset of recombinant inbred lines (RIL), which segregate different alleles of the above mentioned QTL (Norry et al., 2009), to explore for possible associations between SHS in larvae and adults as well as between SHS and a trait of resistance to a stress by UV radiation (UV-C resistance) in adult flies.Fil: Arias, Leticia Noemi. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Gomez, Federico Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Sambucetti, Pablo Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Do Longevity and Fecundity Change by Selection on Mating Success at Elevated Temperature?: Correlated Selection Responses in Drosophila buzzatii

    No full text
    Adaptation to environmental temperature depends on both direct and correlated responses to selection for reproduction and survival at elevated temperature. Sexual selection is one of the most powerful of all evolutionary forces and we tested both fecundity and longevity for their correlated responses to sexual selection on the ability to mate (mating success) at high temperature. Replicated lines selected for 15 generations of mating at 33 °C (S lines) were compared to their respective controls (C lines) in D. buzzatii in three thermal regimes: 25 °C, 30 °C and a cyclic thermal regime for longevity from 17 to 32 °C. Previous work showed that S lines successfully responded for the trait selected and the present results show a trade-off in males between mating success at elevated temperature and longevity in all three thermal regimes tested. In addition, inter-sexual relationships of trade-offs were apparent between male longevity and female fecundity as correlated selection responses. In this sex-specific association of trade off, S females exhibited higher fecundity than C females at 30 °C only if females were exposed to a limited social environment of a single male. Overall, selection for mating at high temperature increases female fecundity at high temperature but decreases longevity in males. This sex-specific and negative impact on longevity in males could be the result of a genetic correlation between mating success at high temperature and reduced longevity in this sex.Fil: Stazione, Leonel Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Norry, Fabian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Sambucetti, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Mating success at elevated temperature is associated to thermal adaptation in a set of recombinant inbred lines of Drosophila melanogaster

    No full text
    In insects, mating ability at elevated temperature can be relevant for adaptation to heat-stressed environments and global warming. Here, we examined copulation latency (T1), copulation duration (T2), and mating frequency (T3, an index of mating success) in two related sets of recombinant inbred lines (RIL) in Drosophila melanogaster at both elevated (33 °C) and benign (25 °C) temperatures. One of these RIL sets (RIL-SH2) was shown to be consistently more resistant in both heat knockdown and heat-shock survival assays than its related set (RIL-D48) in previous studies. Negative correlations across RILs were found between T1 and T3 in this study. Flies from the heat-resistant set of RIL (RIL-SH2) were better able to mate at elevated temperature than flies from the heat-susceptible set (RIL-D48). Quantitative trait locus (QTL) mapping identified temperature-dependent QTLs for all traits (T1, T2 and T3) on all the three major chromosomes. Mating success at elevated temperature was found to be influenced by multiple QTLs. At elevated temperature, several QTLs for mating traits co-localized with QTLs that were previously associated with thermotolerance. The genetic basis for T1, T2 and T3 at the elevated temperature was found to be largely different from the genetic basis controlling the variation for mating success at benign temperature, as there was only a very low (or even null) number of QTLs overlapping across temperatures.Fil: Stazione, Leonel Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Sambucetti, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Norry, Fabian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentin

    Heat-hardening effects on mating success at high temperature in Drosophila melanogaster

    No full text
    Reproduction is strongly influenced by environmental temperature in insects. At high temperature, mating success could be influenced not only by basal (non-inducible) thermotolerance but also by inducible plastic responses. Here, mating success at high temperature was tested in flies carrying contrasting genotypes of heat resistance in Drosophila melanogaster. The possible heat-hardening effect was tested. Mating success did not differ between heat-resistant and heat-sensitive genotypes when tested both at high (33 °C) and benign (25 °C) temperature, independently of the heat-hardening status. Importantly, heat-hardening pre-treatment increased in a 70% the number of matings at 33 °C in a mass-mating experiment. Further, mating latency at 33 °C was shorter with heat hardening than without it in single-pair assays Heat-hardening had previously been showed to improve short-term thermotolerance in many organisms including Drosophila, and the present results show that heat hardening also improve mating success at elevated temperature. Previous exposures to a mild heat stress improve short-term mating success as a plastic response of ecological relevance. Such heat-hardening effects on mating success should be relevant for predicting potential evolutionary responses to any possible current scenery of global warming, as well as in sterile insect release programs for pest control in elevated temperature environments.Fil: Stazione, Leonel Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Norry, Fabian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Sambucetti, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Patterns of longevity and fecundity at two temperatures in a set of heat-selected recombinant inbred lines of Drosophila melanogaster

    Get PDF
    Quantitative trait loci (QTL) were mapped for longevity and fecundity at two temperatures, 20 and 30 °C, in two sets of recombinant inbred lines (RIL) highly differing in thermotolerance. Early fecundity (EF) and longevity showed a negative association between temperatures. For instance, longevity was higher and fecundity was lower in the RIL panel showing higher life span at 30 °C. One X-linked QTL (7B3-12E) co-localized for longevity and EF at 20 °C, with one QTL allele showing a positive additive effect on longevity and a negative effect on EF. The across-RIL genetic correlation between longevity and EF was not significant within each temperature, and most QTL that affect life span have no effect on EF at each temperature. EF and longevity can mostly be genetically uncoupled in the thermotolerance-divergent RIL within each temperature as opposed to between temperatures. QTL were mostly temperature specific, although some trait-specific QTL showed possible antagonistic effects between temperatures.Fil: Sambucetti, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Loeschcke, V.. University Aarhus; DinamarcaFil: Norry, Fabian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Effects of dietary composition on life span of Drosophila buzzatii and its short-lived sibling species D. koepferae

    Get PDF
    Two sibling Drosophila species dramatically divergent in longevity, Drosophila buzzatii and D. koepferae, were examined for possible effects of both developmental culture medium and dietary composition (DC) on longevity. Longevity was greatly increased in the longer lived D. buzzatii when flies were reared and fed on a rich-in-nutrient and cactus-based culture (R-CBC) as compared to longevity in a poor nutrient culture (PNC). In D. buzzatii, life span was further increased by exposing flies to short periods of a poor-in-nutrient and cactus-based culture (P-CBC). In contrast, variation in the here used nutrient composition did not change life span in the shorter lived D. koepferae, as longevity in this species did not differ among R-CBC, P-CBC and PNC cultures. Hormesis is a plausible explanation for the beneficial biological effects against aging arising from brief exposure to a lowed calorie food source in D. buzzatii. This study shows that genetic variation between closely related species is substantial for dietary effects on longevity.Fil: Gomez, Federico Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Sambucetti, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Norry, Fabian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Elevated extension of longevity by cyclically heat stressing a set of recombinant inbred lines of Drosophila melanogaster throughout their adult life

    No full text
    An extremely high (about 100 %) increase in longevity is reported for a subset of recombinant inbred lines (RILs) of Drosophila melanogaster subjected to a cyclic heat stress throughout the adult life. Previous work showed that both longevity and heat sensitivity highly differed among RILs. The novel heat stress treatment used in this study consisted of 5 min at 38 °C applicated approximately every 125 min throughout the adult life starting at the age of 2 days. In spite of the exceptionally high increase in longevity in a set of RILs, the same heat stress treatment reduced rather than increased longevity in other RILs, suggesting that heat-induced hormesis is dependent on the genotype and/or the genetic background. Further, one quantitative trait locus (QTL) was identified for heat-induced hormesis on chromosome 2 (bands 28A1-34D2) in one RIL panel (RIL-D48) but it was not significant in its reciprocal panel (RIL-SH2). The level of heat-induced hormesis showed a sexual dimorphism, with a higher number of lines exhibiting higher hormesis effects in males than in females. The new heat stress treatment in this study suggests that longevity can be further extended than previously suggested by applying a cyclic and mild stress throughout the life, depending on the genotype.Fil: Gomez, Federico Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Sambucetti, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Norry, Fabian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin
    corecore