29 research outputs found

    By design : negotiating flexible learning in the built environment discipline

    Full text link
    The term ‘flexible education’ is now firmly entrenched within Australian higher education discourse, yet the term is a contested one imbued with a multiplicity of meanings. This paper describes a process designed to elucidate how the idea of flexible education can be translated into teaching models that are informed by the specific demands of disciplinary contexts. The process uses a flexible learning ‘matching’ tool to articulate the understandings and preferences of students and academics of the Built Environment to bridge the gap between student expectations of flexibility and their teacher’s willingness and ability to provide that flexibility within the limits of the pedagogical context and teaching resources. The findings suggest an informed starting point for educators in the Built Environment and other creative disciplines from which to traverse the complexities inherent in negotiating flexibility in an increasingly digital world

    Post-tsunami natural regeneration of coastal vegetation in the Hambantota district in south-eastern Sri Lanka

    Get PDF
    A qualitative rapid survey was conducted in 45 plots distributed in the gentle seashore vegetation andsand dunes (n = 13), coastal scrublands (n = 19), and mangroves (n = 13) along the coastline ofHambantota District, affected by the Indian Ocean tsunami. The objective of the survey was toinvestigate the natural regeneration of coastal vegetation 20 months after the tsunami disturbance21 plant species belonging to 19 families were recorded as the prominent plants regenerating inaffected mangroves, while 16 species in 15 families and 32 species in 23 families were observed asprom inent plants to regenerate in affected areas of the gentle sea-shore vegetation and coastalscrublands respectively.In tsunami affected mangrove stands Acanthus iltctfolius (in 50% of study plots), Achrosticumaureum (40%) and Lumnitzera racemosa (17%) were the dominant species establishing in openmuddy substrates, while Clerodendrum inerme (57%), Lumnitzera racemosa and Excoecariaaga//ocha (29% each) were regenerating in sand deposited in the mangrove patches.Ipomoea pes-caprae (85%), Scaevola taccada and Calotropis gigantea (23% each) were observedas the dominant species re-establishing in the gentle seashore vegetation, while Spinifex littoreusshows a slow rate of regeneration. Most of the destroyed Pandanus odoratissimus bushes facingthe beach are not regenerating. Instead a new row of Pandanus was observed regenerating immediatelybacking the original stands. Prominent species regenerating in coastal scrublands are Crotonbonplandianus and Gymnema sylvestre (37% each), Clerodendrum inerme (16%), Calotropisgigantea (10%) and Crateva adansonii (10%) and saplings of Azadirachta indica and Limoniaacidissitna .Invasive alien plants, mainly Opuntia dillennii have established well and spreading vigorously inaffected coastal scrublands (58%), some study plots of gentle seashore vegetation (31 %) as wellas on sand depositions in the affected mangroves (15%). This species was observed replacing thespaces occupied by destroyed Pandanus odoratissimus bushes and Spinifex littoreus beds.Invasive alien plants such as Prosopis juliflora and Lantana camara were also spreading intsunami disturbed coastal scrublands.

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    Population genetic structure of Aedes polynesiensis in the Society Islands of French Polynesia: implications for control using a Wolbachia-based autocidal strategy

    Get PDF
    Abstract Background Aedes polynesiensis is the primary vector of Wuchereria bancrofti in the South Pacific and an important vector of dengue virus. An improved understanding of the mosquito population genetics is needed for insight into the population dynamics and dispersal, which can aid in understanding the epidemiology of disease transmission and control of the vector. In light of the potential release of a Wolbachia infected strain for vector control, our objectives were to investigate the microgeographical and temporal population genetic structure of A. polynesiensis within the Society Islands of French Polynesia, and to compare the genetic background of a laboratory strain intended for release into its population of origin. Methods A panel of eight microsatellite loci were used to genotype A. polynesiensis samples collected in French Polynesia from 2005-2008 and introgressed A. polynesiensis and Aedes riversi laboratory strains. Examination of genetic differentiation was performed using F-statistics, STRUCTURE, and an AMOVA. BAYESASS was used to estimate direction and rates of mosquito movement. Results FST values, AMOVA, and STRUCTURE analyses suggest low levels of intra-island differentiation from multiple collection sites on Tahiti, Raiatea, and Maupiti. Significant pair-wise FST values translate to relatively minor levels of inter-island genetic differentiation between more isolated islands and little differentiation between islands with greater commercial traffic (i.e., Tahiti, Raiatea, and Moorea). STRUCTURE analyses also indicate two population groups across the Society Islands, and the genetic makeup of Wolbachia infected strains intended for release is similar to that of wild-type populations from its island of origin, and unlike that of A. riversi. Conclusions The observed panmictic population on Tahiti, Raiatea, and Moorea is consistent with hypothesized gene flow occurring between islands that have relatively high levels of air and maritime traffic, compared to that of the more isolated Maupiti and Tahaa. Gene flow and potential mosquito movement is discussed in relation to trials of applied autocidal strategies.</p

    Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review

    Get PDF

    The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed.</p> <p>Results</p> <p>Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented.</p> <p>Conclusions</p> <p>This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.</p
    corecore