70 research outputs found
Recommended from our members
FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)
The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas
Recommended from our members
FWP executive summaries: Basic energy sciences materials sciences programs
This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico
High pressure phases in highly piezoelectric Pb(Zr0.52Ti0.48)O3
Two novel room-temperature phase transitions are observed, via synchrotron
x-ray diffraction and Raman spectroscopy, in the Pb(Zr0.52Ti0.48)O3 alloy under
hydrostatic pressures up to 16 GPa. A monoclinic (M)-to-rhombohedral (R1) phase
transition takes place around 2-3 GPa, while this R1 phase transforms into
another rhombohedral phase, R2, at about 6-7 GPa. First-principles calculations
assign the R3m and R3c symmetry to R1 and R2, respectively, and reveal that R2
acts as a pressure-induced structural bridge between the polar R3m and a
predicted antiferrodistortive R-3c phase.Comment: REVTeX, 4 pages with 3 figures embedded. Figs 1 and 3 in colo
Coexistence of the Critical Slowing Down and Glassy Freezing in Relaxor Ferroelectrics
We have developed a dynamical model for the dielectric response in relaxor
ferroelectrics which explicitly takes into account the coexistence of the
critical slowing down and glassy freezing. The application of the model to the
experiment in PMN allowed for the reconstruction of the nonequilibrium spin
glass state order parameter and its comparison with the results of recent NMR
experiment (Blinc et al., Phys. Rev. Lett. 83, No. 2 (1999)). It is shown that
the degree of the local freezing is rather small even at temperatures where the
field-cooled permittivity exceeds the frequency dependent permittivity by an
order of magnitude. This observation indicates the significant role of the
critical slowing down (accompanying the glass freezing) in the system dynamics.
Also the theory predicts an important interrelationship between the frequency
dependent permittivity and the zero-field-cooled permittivity, which proved to
be consistent with the experiment in PMN (A. Levstik et. al., Phys. Rev. B 57,
11204 (1998))
Invariance of Charge of Laughlin Quasiparticles
A Quantum Antidot electrometer has been used in the first direct observation
of the fractionally quantized electric charge. In this paper we report
experiments performed on the integer i = 1, 2 and fractional f = 1/3 quantum
Hall plateaus extending over a filling factor range of at least 27%. We find
the charge of the Laughlin quasiparticles to be invariantly e/3, with standard
deviation of 1.2% and absolute accuracy of 4%, independent of filling,
tunneling current, and temperature.Comment: 4 pages, 5 fig
Influence of uniaxial tensile stress on the mechanical and piezoelectric properties of short-period ferroelectric superlattice
Tetragonal ferroelectric/ferroelectric BaTiO3/PbTiO3 superlattice under
uniaxial tensile stress along the c axis is investigated from first principles.
We show that the calculated ideal tensile strength is 6.85 GPa and that the
superlattice under the loading of uniaxial tensile stress becomes soft along
the nonpolar axes. We also find that the appropriately applied uniaxial tensile
stress can significantly enhance the piezoelectricity for the superlattice,
with piezoelectric coefficient d33 increasing from the ground state value by a
factor of about 8, reaching 678.42 pC/N. The underlying mechanism for the
enhancement of piezoelectricity is discussed
Reversible Pressure-Induced Amorphization in Solid C70 : Raman and Photoluminescence Study
We have studied single crystals of by Raman scattering and
photoluminescence in the pressure range from 0 to 31.1 GPa. The Raman spectrum
at 31.1 GPa shows only a broad band similar to that of the amorphous carbon
without any trace of the Raman lines of . After releasing the pressure
from 31.1 GPa, the Raman and the photoluminescence spectra of the recovered
sample are that of the starting crystal. These results indicate that
the molecules are stable upto 31.1 GPa and the amorphous carbon high
pressure phase is reversible, in sharp contrast to the results on solid
. A qualitative explaination is suggested in terms of inter- versus
intra-molecular interactions.Comment: To appear in Phys. Rev. Lett., 12 pages, RevTeX (preprint format), 3
figures available upon reques
Quantum phase transitions and thermodynamic properties in highly anisotropic magnets
The systems exhibiting quantum phase transitions (QPT) are investigated
within the Ising model in the transverse field and Heisenberg model with
easy-plane single-site anisotropy. Near QPT a correspondence between parameters
of these models and of quantum phi^4 model is established. A scaling analysis
is performed for the ground-state properties. The influence of the external
longitudinal magnetic field on the ground-state properties is investigated, and
the corresponding magnetic susceptibility is calculated. Finite-temperature
properties are considered with the use of the scaling analysis for the
effective classical model proposed by Sachdev. Analytical results for the
ordering temperature and temperature dependences of the magnetization and
energy gap are obtained in the case of a small ground-state moment. The forms
of dependences of observable quantities on the bare splitting (or magnetic
field) and renormalized splitting turn out to be different. A comparison with
numerical calculations and experimental data on systems demonstrating magnetic
and structural transitions (e.g., into singlet state) is performed.Comment: 46 pages, RevTeX, 6 figure
First-principles study of the ferroelastic phase transition in CaCl_2
First-principles density-functional calculations within the local-density
approximation and the pseudopotential approach are used to study and
characterize the ferroelastic phase transition in calcium chloride (CaCl_2). In
accord with experiment, the energy map of CaCl_2 has the typical features of a
pseudoproper ferroelastic with an optical instability as ultimate origin of the
phase transition. This unstable optic mode is close to a pure rigid unit mode
of the framework of chlorine atoms and has a negative Gruneisen parameter. The
ab-initio ground state agrees fairly well with the experimental low temperature
structure extrapolated at 0K. The calculated energy map around the ground state
is interpreted as an extrapolated Landau free-energy and is successfully used
to explain some of the observed thermal properties. Higher-order anharmonic
couplings between the strain and the unstable optic mode, proposed in previous
literature as important terms to explain the soft-phonon temperature behavior,
are shown to be irrelevant for this purpose. The LAPW method is shown to
reproduce the plane-wave results in CaCl_2 within the precision of the
calculations, and is used to analyze the relative stability of different phases
in CaCl_2 and the chemically similar compound SrCl_2.Comment: 9 pages, 6 figures, uses RevTeX
Electronic structure of fluorides: general trends for ground and excited state properties
The electronic structure of fluorite crystals are studied by means of density
functional theory within the local density approximation for the exchange
correlation energy. The ground-state electronic properties, which have been
calculated for the cubic structures ,, , ,
, -, using a plane waves expansion of the wave
functions, show good comparison with existing experimental data and previous
theoretical results. The electronic density of states at the gap region for all
the compounds and their energy-band structure have been calculated and compared
with the existing data in the literature. General trends for the ground-state
parameters, the electronic energy-bands and transition energies for all the
fluorides considered are given and discussed in details. Moreover, for the
first time results for have been presented
- …