3 research outputs found

    Nonhemolytic, Nonmotile Gram-Positive Rods Indicative of Bacillus anthracis

    Get PDF
    We report a 40-year-old female patient who was admitted to the hospital because of a left ovarian mass torsion. A nonhemolytic, nonmotile Bacillus, suspicious of Bacillus anthracis, was isolated from a blood culture. We discuss the evaluation that led to the final identification of the bacterium as B. megaterium

    ALS-associated peripherin spliced transcripts form distinct protein inclusions that are neuroprotective against oxidative stress

    No full text
    Intracellular proteinaceous inclusions are well-documented hallmarks of the fatal motor neuron disorder amyotrophic lateral sclerosis (ALS). The pathological significance of these inclusions remains unknown. Peripherin, a type III intermediate filament protein, is upregulated in ALS and identified as a component within different types of ALS inclusions. The formation of these inclusions may be associated with abnormal peripherin splicing, whereby an increase in mRNA retaining introns 3 and 4 (Per-3,4) leads to the generation of an aggregation-prone isoform, Per-28. During the course of evaluating peripherin filament assembly in SW-13 cells, we identified that expression of both Per-3,4 and Per-28 transcripts formed inclusions with categorically distinct morphology: Per-3,4 was associated with cytoplasmic condensed/bundled filaments, small inclusions (< 10 μM), or large inclusions (≥ 10 μM); while Per-28 was associated with punctate inclusions in the nucleus and/or cytoplasm. We found temporal and spatial changes in inclusion morphology between 12 and 48 h post-transfected cells, which were accompanied by unique immunofluorescent and biochemical changes of other ALS-relevant proteins, including TDP-43 and ubiquitin. Despite mild cytotoxicity associated with peripherin transfection, Per-3,4 and Per-28 expression increased cell viability during H2O2-mediated oxidative stress in BE(2)-M17 neuroblastoma cells. Taken together, this study shows that ALS-associated peripherin isoforms form dynamic cytoplasmic and intranuclear inclusions, effect changes in local endogenous protein expression, and afford cytoprotection against oxidative stress. These findings may have important relevance to understanding the pathophysiological role of inclusions in ALS
    corecore