2,560 research outputs found

    Lambda hyperonic effect on the normal driplines

    Full text link
    A generalized mass formula is used to calculate the neutron and proton drip lines of normal and lambda hypernuclei treating non-strange and strange nuclei on the same footing. Calculations suggest existence of several bound hypernuclei whose normal cores are unbound. Addition of Lambda or, Lambda-Lambda hyperon(s) to a normal nucleus is found to cause shifts of the neutron and proton driplines from their conventional limits.Comment: 6 pages, 4 tables, 0 figur

    Propagating Disturbances along fan-like coronal loops in an active region

    Full text link
    Propagating disturbances are often observed in active region fan-like coronal loops. They were thought to be due to slow mode MHD waves based on some of the observed properties. But the recent studies involving spectroscopy indicate that they could be due to high speed quasi-periodic upflows which are difficult to distinguish from upward propagating slow waves. In this context, we have studied a fan loop structure in the active region AR 11465 using simultaneous spectroscopic and imaging observations from Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode and Atmospheric Imaging Assembly (AIA) on board SDO. Analysis of the data shows significant oscillations at different locations. We explore the variations in different line parameters to determine whether the waves or flows could cause these oscillations to improve the current understanding on the nature of these disturbances.Comment: 12 pages, 6 figures. Accepted for publication in RA

    Remarks on the Noncommutative Gravitational Quantum Well

    Full text link
    A planar phase space having both position and momentum noncommutativity is defined in a more inclusive setting than that considered elsewhere. The dynamics of a particle in a gravitational quantum well in this space is studied. The use of the WKB approximation and the virial theorem enable analytic discussions on the effect of noncommutativity. Consistent results are obtained following either commutative space or noncommutative space descriptions. Comparison with recent experimental data with cold neutrons at Grenoble imposes an upper bound on the noncommutative parameter. Also, our results are compared with a recent numerical analysis of a similar problem.Comment: Latex, 17 pages, Title changed, minor modifications, 3 new references added, To appear in Phys. Rev.

    A scaling theory of quantum breakdown in solids

    Full text link
    We propose a new scaling theory for general quantum breakdown phenomena. We show, taking Landau-Zener type breakdown as a particular example, that the breakdown phenomena can be viewed as a quantum phase transition for which the scaling theory is developed. The application of this new scaling theory to Zener type breakdown in Anderson insulators, and quantum quenching has been discussed.Comment: 3 page

    Double-layer shocks in a magnetized quantum plasma

    Full text link
    The formation of small but finite amplitude electrostatic shocks in the propagation of quantum ion-acoustic waves (QIAWs) obliquely to an external magnetic field is reported in a quantum electron-positron-ion (e-p-i) plasma. Such shocks are seen to have double-layer (DL) structures composed of the compressive and accompanying rarefactive slow-wave fronts. Existence of such DL shocks depends critically on the quantum coupling parameter HH associated with the Bohm potential and the positron to electron density ratio δ\delta. The profiles may, however, steepen initially and reach a steady state with a number of solitary waves in front of the shocks. Such novel DL shocks could be a good candidate for particle acceleration in intense laser-solid density plasma interaction experiments as well as in compact astrophysical objects, e.g., magnetized white dwarfs.Comment: 4 pages, 1 figure (to appear in Physical Review E

    Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release

    Get PDF
    We report the development of a generalized pH-sensitive drug delivery system that can release any charged drug preferentially at the pH range of interest. Our system is based on polypyrrole nanoparticles (PPy NPs), synthesized via a simple one-step microemulsion technique. These nanoparticles are highly monodisperse, stable in solution over the period of a month, and have good drug loading capacity (∼15 wt%). We show that PPy NPs can be tuned to release drugs at both acidic and basic pH by varying the pH, the charge of the drug, as well as by adding small amounts of charged amphiphiles. Moreover, these NPs may be delivered locally by immobilizing them in a hydrogel. Our studies show encapsulation within a calcium alginate hydrogel results in sustained release of the incorporated drug for more than 21 days. Such a nanoparticle-hydrogel composite drug delivery system is promising for treatment of long-lasting conditions such as cancer and chronic pain which require controlled, localized, and sustained drug release.DAA

    Peterodimenzijski kozmološki model struna u drugoj samotvornoj teoriji

    Get PDF
    In this paper we have constructed a five-dimensional string cosmological model in Barber\u27s (1982) second self-creation theory of gravitation. When the coupling constant becomes zero, the model degenerates into two different string cosmological models in Einstein\u27s theory corresponding to variable G and constant G. Some physical and geometrical properties of the model are discussed.U ovom smo radu razvili peterodimenzijski kozmološki model struna u okviru druge Barberove samotvorne teorije gravitacije. Kada konstanta vezanja postane jednaka nuli, model se pretvara u dva različita kozmološka modela struna u Einsteinovoj teoriji koji odgovaraju promjenljivom G i stalnom G. Raspravljaju se neka fizička i geometrijska svojstva modela

    Electrical Conductance of Molecular Wires

    Full text link
    Molecular wires (MW) are the fundamental building blocks for molecular electronic devices. They consist of a molecular unit connected to two continuum reservoirs of electrons (usually metallic leads). We rely on Landauer theory as the basis for studying the conductance properties of MW systems. This relates the lead to lead current to the transmission probability for an electron to scatter through the molecule. Two different methods have been developed for the study of this scattering. One is based on a solution of the Lippmann-Schwinger equation and the other solves for the {\bf t} matrix using Schroedinger's equation. We use our methodology to study two problems of current interest. The first MW system consists of 1,4 benzene-dithiolate (BDT) bonded to two gold nanocontacts. Our calculations show that the conductance is sensitive to the chemical bonding between the molecule and the leads. The second system we study highlights the interesting phenomenon of antiresonances in MW. We derive an analytic formula predicting at what energies antiresonances should occur in the transmission spectra of MW. A numerical calculation for a MW consisting of filter molecules attached to an active molecule shows the existence of an antiresonance at the energy predicted by our formula.Comment: 14 pages, 5 figure

    Peterodimenzijski kozmološki model struna u drugoj samotvornoj teoriji

    Get PDF
    In this paper we have constructed a five-dimensional string cosmological model in Barber\u27s (1982) second self-creation theory of gravitation. When the coupling constant becomes zero, the model degenerates into two different string cosmological models in Einstein\u27s theory corresponding to variable G and constant G. Some physical and geometrical properties of the model are discussed.U ovom smo radu razvili peterodimenzijski kozmološki model struna u okviru druge Barberove samotvorne teorije gravitacije. Kada konstanta vezanja postane jednaka nuli, model se pretvara u dva različita kozmološka modela struna u Einsteinovoj teoriji koji odgovaraju promjenljivom G i stalnom G. Raspravljaju se neka fizička i geometrijska svojstva modela
    corecore