4 research outputs found

    Dimerisierung der Taspase1 ist eine Voraussetzung fĂĽr ihre funktionelle Aktivierung

    Get PDF
    Taspase1 ist eine Threonin-Aspartase, die das MLL-Protein an zwei konservierten Erkennungssequenzen (CS1 und CS2) hydrolysiert. Die daraus entstehenden Spaltprodukte, p320N und p180C bilden ein stabiles Heterodimer und fügen sich mit zahlreichen Proteinen zu einem Multiproteinkomplex zusammen, der die epigenetischen Prozesse während der Embryogenese, Zellzyklus und Stammzell-Wachstum steuert. Der MLL-Komplex weist eine spezifische Histon-Methyltransferase-Aktivität für Lysin-4 des Histon 3 Proteins auf (H3K4me3). Diese spezifische Aktivität hält ein Muster der aktiven Gene während der Entwicklung und Zelldifferenzierung aufrecht. Das AF4-MLL Fusionsprotein, welches durch die chromosomale Translokation t(4;11) gebildet wird, ist ebenfalls ein Substrat von Taspase1. Die Hydrolyse dieses Fusionsproteins führt ebenfalls zu Spaltprodukten, die zunächst miteinander ein Heterodimer bilden, um anschliessend einen onkogenen Multiproteinkomplex auszubilden. Dieser Komplex scheint hämatopoietische Stammzellen zu "reprogrammieren" und den Ausbruch einer lymphoblastischen Leukämie auszulösen. Die Aktivität der Taspase1 selbst wird durch Eigen-Proteolyse reguliert. Es wird zunächst als Proenzym (p50) hergestellt, das anschliessend durch Autoproteolyse in die enzymatisch aktive Form konvertiert wird. Taspase1 ist ein enzymatisch strikt kontrolliertes Enzym mit geringer Substratanzahl. Neben MLL gibt es nur wenige, bekannte Substrate; allerdings scheint Taspase1 in den Zellen solider Tumoren überexprimiert zu sein. Daraus kann postuliert werden, dass Taspase1/MLL-Aktivität für diese Tumorarten von bedeutung ist. Taspase1 ist die einzige bislang bekannte Protease in Säugerzellen, die dazu befähigt ist, das Leukämie-spezifische AF4-MLL proteolytisch zu spalten und damit seine onkogenen Eigenschaften zu aktivieren. Eine spezifische Inhibierung der Taspase1 könnte deshalb eine mögliche Methode zur Therapie von t(4;11)-Leukämie darstellen. Aus diesem Grund war Taspase1 als ein potentielles Wirkstoffziel interessant und wurde im Rahmen dieser Arbeit genauer untersucht. Um die Funktionsweise von Taspase1 zu untersuchen, wurde die 2005 veröffentlichte Kristallstruktur der Taspase1 als Grundlage für alle weiteren Arbeiten verwendet. Da die Struktur allerdings nur unvollständig aufgelöst war, wurden die unaufgelösten Bereiche mittels bioinformatischer Tools in Kooperation mit Tim Geppert (Arbeitskreis von Prof. Dr. Gisbert Schneider) modelliert. Die Modellierung führte zu einem detaillierteren Modell des Taspase1-Proenzyms, also dem Zustand vor der autokatalytischen Aktivierung. Taspase1 weist interessanterweise nur Homologien zu L-Asparaginasen-2 (Familie der Hydrolasen), darunter Glycosylasparaginase, auf. Glycosylasparaginase durchläuft ebenfalls einen Autokatalyse-Prozess, allerdings nach einem N-O-Acyl-shift-Mechanismus. Daher wurde Taspase1 zunächst anhand geeigneter Experimente daraufhin überprüft, ob hier ebenso ein solcher Mechanismus für die Autokatalyse in Betracht kommt. Allerdings widerlegten die durchgeführten Experimente diese Vermutung. Um die molekulare Funktionsweise der Taspase1 zu eruieren, wurde nun das modellierte Taspase1-Proenzym verwendet. Dies erlaubte die Identifizierung von kritischen Aminosäuren. Durch Mutationsanalysen konnte so die Funktion von Taspase1 aufgeklärt werden. So wurde ein intrinsischer Serin-Protease-Mechanismus für den Prozess der Autokatalyse entdeckt. Dabei spielt Serin-291 - unmittelbar in der Nähe des katalytischen Zentrums - eine wesentliche Rolle. Anhand weiterer Mutationsanalysen konnte dann schrittweise der Aktivierungsmechanismus von Taspase1 aufgeklärt werden. Dabei scheint die Homodimerisierung zweier Taspase1- Proenzyme der wesentliche Schlüssel für die vollständige Aktivierung der Taspase1 zu sein. Im Rahmen dieser Arbeit wurden die Aminosäuren Tryptophan-173, Arginin-262, und Glutaminsäure-295 als kritische Aminosäuren identifiziert. Weiterhin konnte anhand der funktionellen Analyse aller Mutanten zuletzt eine trans-dominant-negative Taspase1-Variante (C163E-S291A; tdn-TASP1) hergestellt werden. Das proenzymatische Monomer dieser Mutante ist dabei befähigt, mit einem Wildtyp-Taspase1-Monomer zu heterodimerisieren und seine Aktivität vollständig zu inhibieren. Die Funktion dieser trans-dominant-negativen Mutante validierte den in dieser Arbeit postulierten Aktivierungsmechanismus der Taspase1, der nun zukünftig für ein rationales Wirkstoff-Design verwendet werden kann

    Bioassays to Monitor Taspase1 Function for the Identification of Pharmacogenetic Inhibitors

    Get PDF
    Background: Threonine Aspartase 1 (Taspase1) mediates cleavage of the mixed lineage leukemia (MLL) protein and leukemia provoking MLL-fusions. In contrast to other proteases, the understanding of Taspase1's (patho)biological relevance and function is limited, since neither small molecule inhibitors nor cell based functional assays for Taspase1 are currently available. Methodology/Findings: Efficient cell-based assays to probe Taspase1 function in vivo are presented here. These are composed of glutathione S-transferase, autofluorescent protein variants, Taspase1 cleavage sites and rational combinations of nuclear import and export signals. The biosensors localize predominantly to the cytoplasm, whereas expression of biologically active Taspase1 but not of inactive Taspase1 mutants or of the protease Caspase3 triggers their proteolytic cleavage and nuclear accumulation. Compared to in vitro assays using recombinant components the in vivo assay was highly efficient. Employing an optimized nuclear translocation algorithm, the triple-color assay could be adapted to a high-throughput microscopy platform (Z'factor = 0.63). Automated high-content data analysis was used to screen a focused compound library, selected by an in silico pharmacophor screening approach, as well as a collection of fungal extracts. Screening identified two compounds, N-[2-[(4-amino-6-oxo-3H-pyrimidin-2-yl)sulfanyl]ethyl]benzenesulfonamideand 2-benzyltriazole-4,5-dicarboxylic acid, which partially inhibited Taspase1 cleavage in living cells. Additionally, the assay was exploited to probe endogenous Taspase1 in solid tumor cell models and to identify an improved consensus sequence for efficient Taspase1 cleavage. This allowed the in silico identification of novel putative Taspase1 targets. Those include the FERM Domain-Containing Protein 4B, the Tyrosine-Protein Phosphatase Zeta, and DNA Polymerase Zeta. Cleavage site recognition and proteolytic processing of these substrates were verified in the context of the biosensor. Conclusions: The assay not only allows to genetically probe Taspase1 structure function in vivo, but is also applicable for high-content screening to identify Taspase1 inhibitors. Such tools will provide novel insights into Taspase1's function and its potential therapeutic relevance

    Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4–MLL Fusion Protein

    No full text
    We have recently demonstrated that Taspase1-mediated cleavage of the AF4–MLL oncoprotein results in the formation of a stable multiprotein complex which forms the key event for the onset of acute proB leukemia in mice. Therefore, Taspase1 represents a conditional oncoprotein in the context of t(4;11) leukemia. In this report, we used site-directed mutagenesis to unravel the molecular events by which Taspase1 becomes sequentially activated. Monomeric pro-enzymes form dimers which are autocatalytically processed into the enzymatically active form of Taspase1 (αββα). The active enzyme cleaves only very few target proteins, e.g., MLL, MLL4 and TFIIA at their corresponding consensus cleavage sites (CSTasp1) as well as AF4–MLL in the case of leukemogenic translocation. This knowledge was translated into the design of a dominant-negative mutant of Taspase1 (dnTASP1). As expected, simultaneous expression of the leukemogenic AF4–MLL and dnTASP1 causes the disappearance of the leukemogenic oncoprotein, because the uncleaved AF4–MLL protein (328 kDa) is subject to proteasomal degradation, while the cleaved AF4–MLL forms a stable oncogenic multi-protein complex with a very long half-life. Moreover, coexpression of dnTASP1 with a BFP-CSTasp1-GFP FRET biosensor effectively inhibits cleavage. The impact of our findings on future drug development and potential treatment options for t(4;11) leukemia will be discussed

    Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4-MLL Fusion Protein

    No full text
    We have recently demonstrated that Taspase1-mediated cleavage of the AF4–MLL oncoprotein results in the formation of a stable multiprotein complex which forms the key event for the onset of acute proB leukemia in mice. Therefore, Taspase1 represents a conditional oncoprotein in the context of t(4;11) leukemia. In this report, we used site-directed mutagenesis to unravel the molecular events by which Taspase1 becomes sequentially activated. Monomeric pro-enzymes form dimers which are autocatalytically processed into the enzymatically active form of Taspase1 (αββα). The active enzyme cleaves only very few target proteins, e.g., MLL, MLL4 and TFIIA at their corresponding consensus cleavage sites (CSTasp1) as well as AF4–MLL in the case of leukemogenic translocation. This knowledge was translated into the design of a dominant-negative mutant of Taspase1 (dnTASP1). As expected, simultaneous expression of the leukemogenic AF4–MLL and dnTASP1 causes the disappearance of the leukemogenic oncoprotein, because the uncleaved AF4–MLL protein (328 kDa) is subject to proteasomal degradation, while the cleaved AF4–MLL forms a stable oncogenic multi-protein complex with a very long half-life. Moreover, coexpression of dnTASP1 with a BFP-CSTasp1-GFP FRET biosensor effectively inhibits cleavage. The impact of our findings on future drug development and potential treatment options for t(4;11) leukemia will be discussed
    corecore