thesis

Dimerisierung der Taspase1 ist eine Voraussetzung für ihre funktionelle Aktivierung

Abstract

Taspase1 ist eine Threonin-Aspartase, die das MLL-Protein an zwei konservierten Erkennungssequenzen (CS1 und CS2) hydrolysiert. Die daraus entstehenden Spaltprodukte, p320N und p180C bilden ein stabiles Heterodimer und fügen sich mit zahlreichen Proteinen zu einem Multiproteinkomplex zusammen, der die epigenetischen Prozesse während der Embryogenese, Zellzyklus und Stammzell-Wachstum steuert. Der MLL-Komplex weist eine spezifische Histon-Methyltransferase-Aktivität für Lysin-4 des Histon 3 Proteins auf (H3K4me3). Diese spezifische Aktivität hält ein Muster der aktiven Gene während der Entwicklung und Zelldifferenzierung aufrecht. Das AF4-MLL Fusionsprotein, welches durch die chromosomale Translokation t(4;11) gebildet wird, ist ebenfalls ein Substrat von Taspase1. Die Hydrolyse dieses Fusionsproteins führt ebenfalls zu Spaltprodukten, die zunächst miteinander ein Heterodimer bilden, um anschliessend einen onkogenen Multiproteinkomplex auszubilden. Dieser Komplex scheint hämatopoietische Stammzellen zu "reprogrammieren" und den Ausbruch einer lymphoblastischen Leukämie auszulösen. Die Aktivität der Taspase1 selbst wird durch Eigen-Proteolyse reguliert. Es wird zunächst als Proenzym (p50) hergestellt, das anschliessend durch Autoproteolyse in die enzymatisch aktive Form konvertiert wird. Taspase1 ist ein enzymatisch strikt kontrolliertes Enzym mit geringer Substratanzahl. Neben MLL gibt es nur wenige, bekannte Substrate; allerdings scheint Taspase1 in den Zellen solider Tumoren überexprimiert zu sein. Daraus kann postuliert werden, dass Taspase1/MLL-Aktivität für diese Tumorarten von bedeutung ist. Taspase1 ist die einzige bislang bekannte Protease in Säugerzellen, die dazu befähigt ist, das Leukämie-spezifische AF4-MLL proteolytisch zu spalten und damit seine onkogenen Eigenschaften zu aktivieren. Eine spezifische Inhibierung der Taspase1 könnte deshalb eine mögliche Methode zur Therapie von t(4;11)-Leukämie darstellen. Aus diesem Grund war Taspase1 als ein potentielles Wirkstoffziel interessant und wurde im Rahmen dieser Arbeit genauer untersucht. Um die Funktionsweise von Taspase1 zu untersuchen, wurde die 2005 veröffentlichte Kristallstruktur der Taspase1 als Grundlage für alle weiteren Arbeiten verwendet. Da die Struktur allerdings nur unvollständig aufgelöst war, wurden die unaufgelösten Bereiche mittels bioinformatischer Tools in Kooperation mit Tim Geppert (Arbeitskreis von Prof. Dr. Gisbert Schneider) modelliert. Die Modellierung führte zu einem detaillierteren Modell des Taspase1-Proenzyms, also dem Zustand vor der autokatalytischen Aktivierung. Taspase1 weist interessanterweise nur Homologien zu L-Asparaginasen-2 (Familie der Hydrolasen), darunter Glycosylasparaginase, auf. Glycosylasparaginase durchläuft ebenfalls einen Autokatalyse-Prozess, allerdings nach einem N-O-Acyl-shift-Mechanismus. Daher wurde Taspase1 zunächst anhand geeigneter Experimente daraufhin überprüft, ob hier ebenso ein solcher Mechanismus für die Autokatalyse in Betracht kommt. Allerdings widerlegten die durchgeführten Experimente diese Vermutung. Um die molekulare Funktionsweise der Taspase1 zu eruieren, wurde nun das modellierte Taspase1-Proenzym verwendet. Dies erlaubte die Identifizierung von kritischen Aminosäuren. Durch Mutationsanalysen konnte so die Funktion von Taspase1 aufgeklärt werden. So wurde ein intrinsischer Serin-Protease-Mechanismus für den Prozess der Autokatalyse entdeckt. Dabei spielt Serin-291 - unmittelbar in der Nähe des katalytischen Zentrums - eine wesentliche Rolle. Anhand weiterer Mutationsanalysen konnte dann schrittweise der Aktivierungsmechanismus von Taspase1 aufgeklärt werden. Dabei scheint die Homodimerisierung zweier Taspase1- Proenzyme der wesentliche Schlüssel für die vollständige Aktivierung der Taspase1 zu sein. Im Rahmen dieser Arbeit wurden die Aminosäuren Tryptophan-173, Arginin-262, und Glutaminsäure-295 als kritische Aminosäuren identifiziert. Weiterhin konnte anhand der funktionellen Analyse aller Mutanten zuletzt eine trans-dominant-negative Taspase1-Variante (C163E-S291A; tdn-TASP1) hergestellt werden. Das proenzymatische Monomer dieser Mutante ist dabei befähigt, mit einem Wildtyp-Taspase1-Monomer zu heterodimerisieren und seine Aktivität vollständig zu inhibieren. Die Funktion dieser trans-dominant-negativen Mutante validierte den in dieser Arbeit postulierten Aktivierungsmechanismus der Taspase1, der nun zukünftig für ein rationales Wirkstoff-Design verwendet werden kann

    Similar works