16 research outputs found

    Submodular Welfare Maximization

    Full text link
    An overview of different variants of the submodular welfare maximization problem in combinatorial auctions. In particular, I studied the existing algorithmic and game theoretic results for submodular welfare maximization problem and its applications in other areas such as social networks

    Usability of Humanly Computable Passwords

    Full text link
    Reusing passwords across multiple websites is a common practice that compromises security. Recently, Blum and Vempala have proposed password strategies to help people calculate, in their heads, passwords for different sites without dependence on third-party tools or external devices. Thus far, the security and efficiency of these "mental algorithms" has been analyzed only theoretically. But are such methods usable? We present the first usability study of humanly computable password strategies, involving a learning phase (to learn a password strategy), then a rehearsal phase (to login to a few websites), and multiple follow-up tests. In our user study, with training, participants were able to calculate a deterministic eight-character password for an arbitrary new website in under 20 seconds

    Collective Counterfactual Explanations via Optimal Transport

    Full text link
    Counterfactual explanations provide individuals with cost-optimal actions that can alter their labels to desired classes. However, if substantial instances seek state modification, such individual-centric methods can lead to new competitions and unanticipated costs. Furthermore, these recommendations, disregarding the underlying data distribution, may suggest actions that users perceive as outliers. To address these issues, our work proposes a collective approach for formulating counterfactual explanations, with an emphasis on utilizing the current density of the individuals to inform the recommended actions. Our problem naturally casts as an optimal transport problem. Leveraging the extensive literature on optimal transport, we illustrate how this collective method improves upon the desiderata of classical counterfactual explanations. We support our proposal with numerical simulations, illustrating the effectiveness of the proposed approach and its relation to classic methods

    Causal Fair Metric: Bridging Causality, Individual Fairness, and Adversarial Robustness

    Full text link
    Adversarial perturbation is used to expose vulnerabilities in machine learning models, while the concept of individual fairness aims to ensure equitable treatment regardless of sensitive attributes. Despite their initial differences, both concepts rely on metrics to generate similar input data instances. These metrics should be designed to align with the data's characteristics, especially when it is derived from causal structure and should reflect counterfactuals proximity. Previous attempts to define such metrics often lack general assumptions about data or structural causal models. In this research, we introduce a causal fair metric formulated based on causal structures that encompass sensitive attributes. For robustness analysis, the concept of protected causal perturbation is presented. Additionally, we delve into metric learning, proposing a method for metric estimation and deployment in real-world problems. The introduced metric has applications in the fields adversarial training, fair learning, algorithmic recourse, and causal reinforcement learning

    Causal Adversarial Perturbations for Individual Fairness and Robustness in Heterogeneous Data Spaces

    Full text link
    As responsible AI gains importance in machine learning algorithms, properties such as fairness, adversarial robustness, and causality have received considerable attention in recent years. However, despite their individual significance, there remains a critical gap in simultaneously exploring and integrating these properties. In this paper, we propose a novel approach that examines the relationship between individual fairness, adversarial robustness, and structural causal models in heterogeneous data spaces, particularly when dealing with discrete sensitive attributes. We use causal structural models and sensitive attributes to create a fair metric and apply it to measure semantic similarity among individuals. By introducing a novel causal adversarial perturbation and applying adversarial training, we create a new regularizer that combines individual fairness, causality, and robustness in the classifier. Our method is evaluated on both real-world and synthetic datasets, demonstrating its effectiveness in achieving an accurate classifier that simultaneously exhibits fairness, adversarial robustness, and causal awareness
    corecore