59 research outputs found

    Dynamics of the Destruction and Rebuilding of a Dipole Gap in Glasses

    Full text link
    After a strong electric bias field was applied to a glass sample at temperatures in the millikelvin range its AC-dielectric constant increases and then decays logarithmically with time. For the polyester glass mylar we have observed the relaxation of the dielectric constant back to its initial value for several temperatures and histories of the bias field. Starting from the dipole gap theory we have developed a model suggesting that the change of the dielectric constant after transient application of a bias field is only partly due to relaxational processes. In addition, non-adiabatic driving of tunneling states (TSs) by applied electric fields causes long lasting changes in the dielectric constant. Moreover, our observations indicate that at temperatures below 50 mK the relaxation of TSs is caused primarily by interactions between TSs.Comment: 4 pages, 4 figures, submitted to PR

    Correlated Persistent Tunneling Currents in Glasses

    Full text link
    Low temperature properties of glasses are derived within a generalized tunneling model, considering the motion of charged particles on a closed path in a double-well potential. The presence of a magnetic induction field B violates the time reversal invariance due to the Aharonov-Bohm phase, and leads to flux periodic energy levels. At low temperature, this effect is shown to be strongly enhanced by dipole-dipole and elastic interactions between tunneling systems and becomes measurable. Thus, the recently observed strong sensitivity of the electric permittivity to weak magnetic fields can be explained. In addition, superimposed oscillations as a function of the magnetic field are predicted.Comment: 4 page

    Dynamics of Highly Supercooled Liquids:Heterogeneity, Rheology, and Diffusion

    Full text link
    Highly supercooled liquids with soft-core potentials are studied via molecular dynamics simulations in two and three dimensions in quiescent and sheared conditions.We may define bonds between neighboring particle pairs unambiguously owing to the sharpness of the first peak of the pair correlation functions. Upon structural rearrangements, they break collectively in the form of clusters whose sizes grow with lowering the temperature TT. The bond life time τb\tau_b, which depends on TT and the shear rate \gdot, is on the order of the usual structural or α\alpha relaxation time τα\tau_{\alpha} in weak shear \gdot \tau_{\alpha} \ll 1, while it decreases as 1/\gdot in strong shear \gdot\tau_{\alpha} \gg 1 due to shear-induced cage breakage. Accumulated broken bonds in a time interval (0.05τb\sim 0.05\tau_b) closely resemble the critical fluctuations of Ising spin systems. For example, their structure factor is well fitted to the Ornstein-Zernike form, which yields the correlation length ξ\xi representing the maximum size of the clusters composed of broken bonds. We also find a dynamical scaling relation, τbξz\tau_b \sim \xi^{z}, valid for any TT and \gdot with z=4z=4 in two dimensions and z=2z=2 in three dimensions. The viscosity is of order τb\tau_b for any TT and \gdot, so marked shear-thinning behavior emerges. The shear stress is close to a limiting stress in a wide shear region. We also examine motion of tagged particles in shear in three dimensions. The diffusion constant is found to be of order τbν\tau_b^{-\nu} with ν=0.750.8\nu=0.75 \sim 0.8 for any TT and \gdot, so it is much enhanced in strong shear compared with its value at zero shear. This indicates breakdown of the Einstein-Stokes relation in accord with experiments. Some possible experiments are also proposed.Comment: 20pages (including figures
    corecore