2 research outputs found

    Characterisation of autophagy disruption in the ileum of pigs infected with Lawsonia intracellularis

    Get PDF
    Lawsonia intracellularis is the aetiological agent of proliferative enteropathy, an enteric disease endemic in swine. Survival in its intracellular niche of the ileum epithelial lining requires the capacity to subvert, repress or exploit the host immune response to create an environment conducive to bacterial propagation. To better understand how L. intracellularis survives in its intracellular niche, we have performed an investigation into the dynamic relationship between infection and the host autophagy response by immunohistochemistry in experimentally infected porcine ileum samples. Beclin1, a protein required early in the autophagy pathway was observed to be distributed with a basal to apical concentration gradient in the crypts of healthy piglets, whilst infected piglets were observed to have no gradient of distribution and an increase in the presence of Beclin1 in crypts with histological characteristics of L. intracellularis residence. Detecting microtubule-associated protein light chain 3 (LC3) is used as a method for monitoring autophagy progression as it associates with mature autophagosomes. For LC3 there was no notable change in signal intensity between crypts with characteristic L. intracellularis infection and healthy crypts of uninfected pigs. Finally, as p62 is degraded with the internal substrate of an autophagosome it was used to measure autophagic flux. There was no observed reduction or redistribution of p62. These preliminary results of the autophagy response in the ileum suggest that L. intracellularis affects autophagy. This disruption to host ileum homeostasis may provide a mechanism that assists in bacterial propagation and contributes to pathogenesis

    Swine ANP32A supports avian influenza virus polymerase

    Get PDF
    Avian influenza viruses occasionally infect and adapt to mammals, including humans. Swine are often described as 'mixing vessels', being susceptible to both avian and human origin viruses, which allows the emergence of novel reassortants, such as the precursor to the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus polymerase cofactors. In this study we describe how swine ANP32A, uniquely among the mammalian ANP32 proteins tested, supports activity of avian origin influenza virus polymerases, and avian influenza virus replication. We further show that after the swine-origin influenza virus emerged in humans and caused the 2009 pandemic it evolved polymerase gene mutations that enabled it to more efficiently use human ANP32 proteins. We map the enhanced pro-viral activity of swine ANP32A to a pair of amino acids, 106 and 156, in the leucine-rich repeat and central domains and show these mutations enhance binding to influenza virus trimeric polymerase. These findings help elucidate the molecular basis for the 'mixing vessel' trait of swine and further our understanding of the evolution and ecology of viruses in this host.Importance Avian influenza viruses can jump from wild birds and poultry into mammalian species such as humans or swine, but only continue to transmit if they accumulate mammalian adapting mutations. Pigs appear uniquely susceptible to both avian and human strains of influenza and are often described as virus 'mixing vessels'. In this study, we describe how a host factor responsible for regulating virus replication, ANP32A, is different between swine and humans. Swine ANP32A allows a greater range of influenza viruses, specifically those from birds, to replicate. It does this through binding the virus polymerase more tightly than the human version of the protein. This work helps to explain the unique properties of swine as 'mixing vessels'
    corecore