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Abstract (max 250 words) 19 

 Avian influenza viruses occasionally infect and adapt to mammals, including humans. 20 

Swine are often described as ‘mixing vessels’, being susceptible to both avian and human 21 

origin viruses, which allows the emergence of novel reassortants, such as the precursor to 22 

the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus 23 

polymerase cofactors. In this study we describe how swine ANP32A, uniquely among the 24 

mammalian ANP32 proteins tested, supports activity of avian origin influenza virus 25 

polymerases, and avian influenza virus replication. We further show that after the swine-26 

origin influenza virus emerged in humans and caused the 2009 pandemic it evolved 27 

polymerase gene mutations that enabled it to more efficiently use human ANP32 proteins. 28 

We map the enhanced pro-viral activity of swine ANP32A to a pair of amino acids, 106 and 29 

156, in the leucine-rich repeat and central domains and show these mutations enhance 30 

binding to influenza virus trimeric polymerase. These findings help elucidate the molecular 31 

basis for the ‘mixing vessel’ trait of swine and further our understanding of the evolution 32 

and ecology of viruses in this host. 33 

Importance (max 150 words) 34 

 Avian influenza viruses can jump from wild birds and poultry into mammalian species 35 

such as humans or swine, but only continue to transmit if they accumulate mammalian 36 

adapting mutations. Pigs appear uniquely susceptible to both avian and human strains of 37 

influenza and are often described as virus ‘mixing vessels’. In this study, we describe how a 38 

host factor responsible for regulating virus replication, ANP32A, is different between swine 39 

and humans. Swine ANP32A allows a greater range of influenza viruses, specifically those 40 

from birds, to replicate. It does this through binding the virus polymerase more tightly than 41 

 on A
pril 14, 2020 by guest

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


the human version of the protein. This work helps to explain the unique properties of swine 42 

as ‘mixing vessels’. 43 

Introduction 44 

Influenza A viruses continuously circulate in their natural reservoir of wild aquatic 45 

and sea birds. Occasionally, avian influenza viruses infect mammalian hosts, but these 46 

zoonotic viruses have to adapt for efficient replication and further transmission. This limits 47 

the emergence of novel endemic strains. Avian-origin, mammalian-adapted influenza 48 

viruses have been isolated from a range of mammalian species including humans, swine, 49 

horses, dogs, seals, and bats (1-6).  50 

One mammalian influenza host of significance are swine, which have been described 51 

as susceptible to viruses of both human- and avian-origin (6). It has been hypothesised that 52 

swine act as ‘mixing vessels’, allowing efficient gene transfer between avian- and 53 

mammalian-adapted viruses. This leads to reassortants, which are able to replicate in 54 

humans, but to which populations have no protective antibody responses, as best illustrated 55 

by the 2009 H1N1 pandemic (pH1N1) (7). The ability of pigs to act as ‘mixing vessels’ has 56 

generally been attributed to the diversity of sialic acids, the receptors for influenza, found in 57 

pigs that would enable co-infection of a single host by diverse influenza strains (8, 9). The 58 

husbandry of swine has also been hypothesised to play a role in this ‘mixing vessel’ trait; 59 

swine are often exposed to wild birds and it is likely their environments are often 60 

contaminated with wild bird droppings containing avian influenza viruses (10, 11). 61 

For an avian-origin influenza virus to efficiently infect and transmit between 62 

mammals several host barriers must be overcome. One major barrier is the weak activity of 63 

avian influenza virus polymerases in the mammalian cell (12, 13). The acidic, (leucine-rich) 64 
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nuclear phosphoproteins of 32 kilodaltons (ANP32) proteins are key host factors responsible 65 

for the restricted polymerase activity of avian influenza viruses in mammalian cells (14). 66 

ANP32 proteins possess an N-terminal domain composed of five leucine rich repeats (LRRs) 67 

and a C-terminal low complexity acidic region (LCAR) separated by a short region termed the 68 

‘central domain’. In birds and most mammals three ANP32 paralogues are found: ANP32A, 69 

ANP32B and ANP32E (15, 16). The roles of ANP32 proteins in cells are diverse and often 70 

redundant between the family members but include histone chaperoning, transcriptional 71 

regulation, regulation of nuclear export and apoptosis (16). In birds, such as chickens and 72 

ducks, an exon duplication allows for the expression of an alternatively spliced, longer 73 

isoform of ANP32A that effectively supports activity of polymerases of avian influenza 74 

viruses (14, 17). Mammals only express the shorter forms of ANP32 proteins which do not 75 

efficiently support avian polymerase unless the virus acquires adaptive mutations, 76 

particularly in the PB2 polymerase subunit, such as E627K (14). A further difference 77 

between the ANP32 proteins of different species is the level of redundancy in their ability to 78 

support influenza polymerase. In humans, two paralogues – ANP32A and ANP32B – are 79 

essential but redundant influenza polymerase cofactors (18, 19). In birds, only a single 80 

family member – ANP32A - supports influenza virus polymerase activity, as avian ANP32B 81 

proteins are not orthologous to mammalian ANP32B (15, 19, 20). In mice, only ANP32B can 82 

support influenza A polymerase activity (18, 19). Neither avian nor mammalian ANP32E 83 

proteins have been shown to support influenza polymerase activity (18-20). 84 

In this study, we investigated the ability of a variety of mammalian ANP32 proteins 85 

to support influenza virus polymerases derived from viruses isolated from a range of hosts. 86 

We find differences in pro-viral efficiency that do not always coincide with the natural virus-87 

host relationship: for example, human ANP32B is better able to support bat influenza 88 
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polymerases than either bat ANP32 protein. Conversely, we describe evidence of human 89 

ANP32 adaptation early during the emergence of the pH1N1 virus from pigs, and find that 90 

swine ANP32A is the most potent pro-viral mammalian ANP32 protein tested, supporting 91 

non-adapted avian virus polymerase activity and avian influenza virus replication 92 

significantly better than human ANP32A. This can be attributed to amino acid differences in 93 

the LRR4 and central domains that enhance the interaction between swine ANP32A and the 94 

influenza polymerase complex, suggesting a mechanism for this enhanced pro-viral activity. 95 

Our findings give support to the special status as potential ‘mixing vessels’ of swine in 96 

influenza evolution. 97 

Results 98 

Mammals naturally susceptible to influenza have two pro-viral ANP32 proteins. 99 

To investigate the ability of different mammalian ANP32A and ANP32B proteins to 100 

support influenza virus polymerase activity, several mammalian-origin influenza virus 101 

polymerase constellations were tested using an ANP32 reconstitution minigenome assay. A 102 

previously described human cell line with both ANP32A and ANP32B ablated (eHAP dKO 103 

(18)) was transfected with expression plasmids encoding ANP32A or ANP32B from chicken, 104 

human, swine, horse, dog, seal or bat, as well as the minimal set of influenza polymerase 105 

expression plasmids for PB2, PB1, PA and nucleoprotein (NP), to drive amplification and 106 

expression of a firefly-luciferase viral-like reporter RNA and a Renilla-luciferase expression 107 

plasmid as a transfection control. 108 

Initially, we tested a panel of polymerases derived from human, canine, equine and 109 

bat influenza viruses. In contrast to chicken ANP32B, which does not support influenza virus 110 

polymerase activity (15, 19, 20), chicken ANP32A and all mammalian ANP32A and ANP32B 111 
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proteins supported activity of the mammalian-origin viral polymerases to varying degrees 112 

(Fig. 1a). Among the mammalian ANP32 proteins tested, for most polymerases, swine 113 

ANP32A provided the strongest support of polymerase activity, whereas the ANP32B 114 

proteins from dog, seal and bat displayed the least efficient pro-viral activity, lower than 115 

those species’ respective ANP32A proteins. These trends could not be explained by 116 

differences in expression levels or nuclear localisation (Fig. 1b, c). The bat influenza 117 

polymerases, along with (human) influenza B polymerase showed a different pattern of 118 

ANP32 usage, being able to strongly utilise ANP32Bs from all mammalian species, 119 

particularly human ANP32B (Fig. 1a). There was no evidence that influenza viruses adapted 120 

to particular mammals had evolved to specifically use the corresponding ANP32 proteins. 121 

For example, dog ANP32A or ANP32B were not the most efficient cofactors for canine 122 

influenza virus polymerase and human ANP32B was better able to support the bat influenza 123 

polymerase than either of the bat ANP32 proteins. 124 

Swine ANP32A, but not other mammalian ANP32 proteins, can support the polymerase 125 

activity and virus replication of avian-origin influenza viruses 126 

We next tested the ANP32 preference of a human 2009 (swine-origin) pH1N1 and 127 

two polymerases from swine influenza isolates. Interestingly, these polymerases were 128 

robustly supported by chicken and swine ANP32A, but not other mammalian ANP32 129 

proteins, with the Eurasian avian-like polymerase from A/swine/England/453/2006 (H1N1; 130 

sw/453) showing the clearest effect (Fig. 2a). We went on to test a panel of avian-origin viral 131 

polymerases with no known mammalian polymerase adaptations, including 132 

A/duck/Bavaria/77(H1N1; Bav), thought to be an avian precursor of the Eurasian avian-like 133 

swine lineage (Fig. 2b)(5). For all the avian origin viral polymerases the stringent preference 134 
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for avian ANP32A to support polymerase activity was evident (co-expression of chicken 135 

ANP32A led to very strong polymerase activity). However, amongst all the mammalian 136 

ANP32 proteins tested, only swine ANP32A was able to significantly support avian influenza 137 

polymerase activity, though to a lesser degree than chicken ANP32A (Fig. 2b). This unique 138 

pro-viral effect of swine ANP32A on swine and avian-origin polymerases was maintained 139 

across a wide titration of plasmid doses (Fig. 2c).  140 

Furthermore, we tested the relative ability of human and swine cells to support 141 

replication of a non-adapted avian influenza virus. Isogenic recombinant 142 

A/turkey/England/50-92/1991(H5N1; 50-92) virus containing either wild-type PB2 (E627) or 143 

the mammalian adaptation PB2-E627K were used to infect wild type human eHAP and swine 144 

NPTr cells (Fig 3a). Although E627K significantly increased the virus replication in both cell 145 

lines, the magnitude of difference was less in the swine cells than the human cells at earlier 146 

time points (for example 17-fold vs 110x-fold at 12 hours post-infection). The less drastic 147 

reduction in replication of the virus with non-adapted avian origin polymerase compared 148 

with the adapted control in swine cells is consistent with the hypothesis that swine ANP32A 149 

can support replication of avian influenza viruses. 150 

To investigate whether this difference was indeed accounted for by differences in 151 

ANP32A proteins, chicken, swine, or human ANP32A were pre-expressed in eHAP dKO cells 152 

that were then infected with 50-92 wild type and E627K recombinant viruses (Fig. 3b). As 153 

shown previously, when empty vector was expressed no virus replication took place (18). 154 

For the mammalian adapted PB2-E627K virus it made little difference which ANP32A protein 155 

was expressed although a trend was seen for chicken ANP32A supporting higher titres than 156 

swine ANP32A, which, in turn, supported higher titres than human ANP32A. For the non-157 
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adapted PB2-E627 virus, however, a greater and significant difference was seen – chicken 158 

ANP32A clearly supported virus replication better than either mammalian ANP32A protein. 159 

Swine ANP32A supported replication of the avian influenza virus to a higher level than 160 

human ANP32A at all time points, and this difference was significant (P<0.05) at 24 hours 161 

post infection. Overall, this indicates that swine ANP32A is better able to both support avian 162 

influenza virus polymerase activity, as well as virus replication, than human ANP32A. 163 

The pH1N1 swine influenza virus polymerase, adapting to humans, evolved to better use 164 

human ANP32 proteins 165 

 In 2009 the swine-origin pH1N1 influenza virus adapted from pigs for transmission 166 

between humans causing an influenza pandemic (7). The pH1N1 polymerase genes were 167 

derived from a swine triple reassortant constellation in which PB2 and PA originally derived 168 

from avian influenza viruses in the mid-1990s (21). From 2009 to 2010 the virus continued 169 

to circulate and adapt to humans in the second and third pandemic waves (22). pH1N1 170 

viruses contain the PB2 polymerase adaptations T271A, G590S, and Q591R, which appear to 171 

compensate for the lack of E627K in enabling replication in mammalian cells and these 172 

amino acids did not change between the first and third waves of the pandemic (23). We 173 

previously showed that a single substitution in the PA subunit of the polymerase, N321K, 174 

contributed to increased polymerase activity of third-wave pH1N1 viruses in human cells 175 

(22). We hypothesised that this PA mutation might function by improving support for the 176 

emerging virus polymerase by the human ANP32 proteins. 177 

 We performed minigenome assays with a first-wave pandemic virus, 178 

A/England/195/2009(pH1N1; E195), and a third-wave pandemic virus 179 

A/England/687/2010(pH1N1; E687), which differ in PA at position 321. As shown before, PA 180 
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321K enhances polymerase activity in general in both virus polymerase backgrounds in 181 

human eHAP cells, as well as swine NPTr cells (Fig. 4a). However, the boost is far greater in 182 

the human cells (~7-fold) than in the swine cells (~2-fold), implying this mutation may have 183 

arisen to overcome the greater restriction seen upon the jump into humans (22).  184 

We next tested the ability of human and swine ANP32 proteins to support the 185 

different pH1N1 polymerases in eHAP dKO cells. Polymerases containing PA-321N are more 186 

robustly enhanced by swine ANP32A (by around 3.5-fold compared to human ANP32A), as is 187 

typical of swine-origin polymerases (Fig. 4b). Swine ANP32A, however, gives a much more 188 

modest boost to polymerase activity compared to human ANP32A when 321K is present 189 

(<2-fold). This suggests the PA N321K adaptation was selected in these viruses to adapt to 190 

the more poorly supportive ANP32 proteins present in human cells. We could further show 191 

that endogenous swine ANP32A protein is predominantly localised in the nucleus in swine 192 

NPTr cells, consistent with our previous over-expression data (Fig. 4c). 193 

Differences in swine and human ANP32A pro-viral activity can be mapped to the LRR4 194 

and central region. 195 

We set out to identify the molecular basis for the unusually high activity of swine 196 

ANP32A in comparison with the other mammalian ANP32 proteins. An alignment of ANP32A 197 

primary sequences identified three amino acids outside the LCAR, that differed between 198 

swine ANP32A and the other mammalian orthologues. Using reciprocal mutant ANP32A 199 

proteins, the identity of amino acid position 156, naturally a serine in swine ANP32A but a 200 

proline in most other mammalian and all avian ANP32A proteins, was shown to have a 201 

major, reciprocal influence on activity (Fig. 5a). The amino acid at position 106 contributed 202 

to a lesser degree, with swine-like valine enhancing pro-viral activity over human-like 203 
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isoleucine when complementing the swine influenza polymerase constellation, though 204 

changes at this residue appeared to have more minor effects on proviral activity supporting 205 

the 50-92 and Bav avian virus polymerases. Position 228, localised nearby the C-terminal 206 

nuclear localisation signal of ANP32A, had no appreciable impact. In the background of 207 

human ANP32A, I106V generally gave between a 1.5- and 6-fold increase in polymerase 208 

activity while P156S gave between a 3- and 16-fold boost, depending on the polymerase 209 

constellation tested. The combined 106/156 mutant showed an additive effect implying 210 

these two residues are, together, responsible for the enhanced pro-viral activity of swine 211 

ANP32A (Fig. 5a,c). None of the mutations affected expression levels (Fig. 5b). Positions 106 212 

and 156 map to the LRR4 and central domains of ANP32 protein, respectively, proximal to 213 

the previously characterised LRR5 residues, 129/130, that are responsible for the lack of 214 

pro-viral activity of avian ANP32B proteins (Fig. 5c)(15, 19). This reinforces the concept that 215 

the LRR4/LRR5/central region of ANP32 proteins is essential to their pro-viral function. 216 

Indeed, we could show that introducing the mutation N129I into swine ANP32A abrogated 217 

its ability to support influenza polymerase activity (Fig. 5a). 218 

An increase in binding to the polymerase accounts for the enhanced pro-viral activity of 219 

swine ANP32A 220 

 Pro-viral ANP32 proteins from birds and mammals directly bind trimeric polymerase 221 

in the cell nucleus (17, 24, 25). Moreover, the inability of avian ANP32B to support influenza 222 

polymerase activity correlates with a lack of protein interaction conferred by amino acid 223 

differences at residues 129 and 130 (15). 224 

 To assess the strength of interaction between swine ANP32A protein and influenza 225 

polymerase, we used a split-luciferase assay, where the two halves of Gaussia luciferase are 226 
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fused onto PB1 and ANP32 protein (15, 25). As seen previously (25), the interaction 227 

between influenza virus polymerase and human ANP32A was weak but detectable above 228 

background (huA, Fig. 6a). Swine ANP32A interacted more strongly with both human-origin - 229 

E195 (pH1N1 2009) - and avian-origin - A/turkey/England/50-92/1991(H5N1) - influenza 230 

polymerases, although not as strongly as chicken ANP32A (Fig. 6a). Furthermore, the two 231 

residues identified as being responsible for strong pro-viral activity of swine ANP32A, at 232 

positions 106 and 156, enhanced polymerase binding by human ANP32A and the reciprocal 233 

mutations decrease the swine ANP32A interaction, implying the mode of action of these 234 

mutations is through enhancing swine ANP32A-polymerase interactions (Fig. 6a). It was also 235 

shown that N129I, the substitution naturally identified in chicken ANP32B and previously 236 

shown to abolish binding and activity in chicken and human ANP32 proteins (15, 19), 237 

showed a similar phenotype in swine ANP32A, abolishing detectable binding and activity 238 

(Fig. 6a,b). The ablations of the pro-viral activity of swine ANP32A and ANP32B by the 239 

substitution N129I was not explained by reductions in expression of these mutant proteins 240 

(Fig. 6b,c). 241 

Estimating the pro-viral activity of ANP32A proteins from other mammalian species  242 

 Based on the molecular markers described in this study it is possible to survey 243 

ANP32A proteins from all mammals to predict which other species may have highly 244 

influenza polymerase supportive proteins and therefore potential to act as mixing vessels 245 

for reassortment between avian and mammalian-adapted influenza viruses. 246 

 Very few mammals share the pro-viral marker, 156S, and the few that do mostly 247 

constitute species not yet described as hosts for influenza viruses (Fig. 6d). A notable 248 

exception is the pika which, in a similar manner to pigs, are known to often become infected 249 
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with avian influenza viruses with minimal mammalian adaptation (26-28). Pigs are currently 250 

the only known mammalian species with a publicly available ANP32A sequence that contain 251 

the secondary, minor pro-viral maker 106V. 252 

Discussion 253 

 In this study we describe the ability of different mammalian ANP32A and ANP32B 254 

proteins to support activity of influenza virus polymerases isolated from a variety of hosts. 255 

We found that swine ANP32A, uniquely among the ANP32 proteins, supports avian 256 

influenza virus polymerase activity and virus replication. Swine ANP32A does not harbour 257 

the avian-specific 33 amino acid duplication that enables the strong interaction and efficient 258 

support of polymerase activity of avian-origin viruses by avian ANP32A proteins (14). Thus, 259 

avian influenza viruses are restricted for replication in swine as we have previously shown, 260 

and mammalian-adapting mutations enhance their polymerase activity in pig cells (11). 261 

Nonetheless, this level of pro-viral activity associated with swine ANP32A, albeit weaker 262 

than avian ANP32As, may contribute to the role of swine as mixing vessels: non-adapted 263 

avian influenza viruses that infect pigs could replicate sufficiently to accumulate further 264 

mutations that allow for more efficient mammalian adaptation and/or reassortment, 265 

enabling virus to either become endemic in swine or to jump into other mammals, including 266 

humans.  267 

We map this strongly pro-viral polymerase phenotype to a pair of mutations which 268 

allow swine ANP32A to bind more strongly to influenza virus polymerase, potentially 269 

explaining the mechanism behind its enhanced pro-viral activity. These residues are only 270 

found in a handful of other mammals including pika. It is conceivable these residues are 271 
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located at a binding interface between polymerase and ANP32, but resolution of the 272 

structure of the host:virus complex will be required to confirm this hypothesis. 273 

A recent study from Zhang and colleagues independently corroborated the superior 274 

ability of swine ANP32A amongst mammalian ANP32 proteins to support avian influenza 275 

virus polymerase activity (29). Moreover, they also correlated this phenotype with amino 276 

acids at position 106 and 156 that increased the strength of interactions between the host 277 

factor and the viral polymerase complex. In their studies the interaction between ANP32 278 

proteins and viral polymerase was measured by co-immunoprecipitation, making it unlikely 279 

that the similar differences we measured using our quantitative split luciferase assay were 280 

due to re-orientation of the luciferase tags.  281 

 It has long been speculated that swine play a role as ‘mixing vessels’, by acting as 282 

host to both human- and avian-origin influenza viruses (30). This trait may be partially 283 

attributed to receptor patterns in swine allowing viruses that bind to both α2,3 linked (i.e. 284 

avian-like viruses) and α2,6 linked sialic acid (i.e. human-like) to replicate alongside each 285 

other (8, 9). However, replication of the avian-origin influenza virus genomes inside infected 286 

cells is also required to enhance the opportunity for further adaptation or reassortment. We 287 

previously developed a minigenome assay for assessing polymerase activity in swine cells 288 

and showed that avian virus polymerases were restricted and that restriction could be 289 

overcome by typical mutations known to adapt polymerase to human cells (11). Taken 290 

together the ability to enter swine cells without receptor switching changes in the 291 

haemagglutinin gene, along with a greater mutation landscape afforded in swine cells by the 292 

partially supportive pro-viral function of swine ANP32A may have an additive effect to allow 293 

swine to act an intermediate host for influenza viruses to adapt to mammals. Furthermore, 294 
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our work implies other mammals, such as the pika, could play a similar role which is of 295 

particular interest due to the pika’s natural habitat often overlapping with that of wild birds 296 

and its (somewhat swine-like) distribution of both α2,3 and α2,6-linked sialic acid receptors 297 

(31). 298 

Upon crossing into humans from swine, it is likely that viruses would be under 299 

selective pressure to adapt to human pro-viral factors, such as the ANP32 proteins. We use 300 

the example of a pair of first- and third-wave pandemic H1N1 influenza viruses isolated from 301 

clinical cases in 2009 and 2010 (22). The polymerase constellation of the 2009 pH1N1 virus 302 

contains PB2 and PA gene segments donated from avian sources to a swine virus in a triple 303 

reassortant constellation in the mid-1990s, then passed onto humans in 2009 (21). Although 304 

the first-wave viruses, derived directly from swine, can clearly replicate and transmit 305 

between humans, over time the PA substitution, N321K, was selected because it enabled 306 

more efficient activity of the viral polymerase in human cells. Our data suggests this is a 307 

direct adaptation to human ANP32 proteins. This again illustrates how swine have acted as a 308 

‘halfway house’ for the step-wise adaptation of genes originating in avian influenza viruses 309 

that have eventually become humanised. 310 

 Also of note, we show here that as for the human orthologues (18, 19), the ANP32A 311 

and B proteins of swine (as well as all other mammals tested here) are redundant in their 312 

ability to support the viral polymerase. We further show that the substitution N129I is able 313 

to partially or fully ablate the pro-viral activity of swine ANP32A and ANP32B. We suggest 314 

that the introduction of this substitution in both swine ANP32A and ANP32B by genome 315 

editing would be a feasible basis for generating influenza resistant, or resilient, pigs, in a 316 
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similar manner to that demonstrated for porcine respiratory and reproductive syndrome 317 

virus resistant pigs, and proposed for influenza resistant, or resilient, chickens (15, 32). 318 

To conclude, we hypothesise that the superior pro-viral function of swine ANP32A 319 

for supporting influenza replication may enable swine to act as intermediary hosts for avian 320 

influenza viruses, and also affect the way the viruses evolve as they pass from birds, through 321 

swine, and onto humans. This, in turn, may influence the ability of different swine influenza 322 

viruses to act as zoonotic agents or as potential pandemic viruses. 323 

Materials and methods 324 

Cells 325 

Human engineered-Haploid cells (eHAP; Horizon Discovery) and eHAP cells with 326 

ANP32A and ANP32B knocked out (dKO) by CRISPR-Cas9, as originally described in (18), 327 

were maintained in Iscove’s Modified Dulbecco’s Medium (IMDM; ThermoFisher) 328 

supplemented with 10% fetal bovine serum (FBS; Biosera), 1% non-essential amino acids 329 

(NEAA; Gibco) and 1% Penicillin-streptomycin (pen-strep; invitrogen). Human embryonic 330 

kidney (293Ts, ATCC), Newborn Pig Trachea cells (NPTr; ATCC), and Madin-Darby Canine 331 

Kidney cells (MDCK; ATCC) were maintained in Dulbecco’s Modified Eagle Medium (DMEM) 332 

supplemented with 10% FBS, 1% NEAA and 1% pen-strep. All cells were maintained at 37oC, 333 

5% CO2. 334 

ANP32 plasmids constructs 335 

Animal ANP32 constructs were codon optimised and synthesised by GeneArt 336 

(ThermoFisher). Sequences used were pig (Sus scrofa) ANP32B (XP_020922136.1), Horse 337 

(Equus caballus) ANP32A (XP_001495860.2) and ANP32B (XP_023485491.1), Dog (Canis 338 
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lupus familiaris) ANP32A (NP_001003013.2), Dingo (Canis lupus dingo) ANP32B 339 

(XP_025328134.1), Monk Seal (Neomonachus schauinslandi) ANP32A (XP_021549451.1) and 340 

ANP32B (XP_021546921.1), and Common Vampire Bat (Desmodus rotundus) ANP32A 341 

(XP_024423449.1) and ANP32B (XP_024415874.1). All isoforms were chosen based on their 342 

orthology and synteny to the known functional human isoforms. Species of origin were 343 

chosen due to being influenza hosts or the most-commonly related species to influenza 344 

hosts (in the case of Monk Seal which are closely related to Harbour Seal whereas common 345 

vampire bats belong to the same family as little yellow-shouldered and flat-faced bats). 346 

Dingo ANP32B was substituted for dog ANP32B as the equivalent isoform used for all other 347 

ANP32Bs is unannotated in the dog genome due to a gap in the scaffold.  All ANP32 348 

expression constructs included a C-terminal GSG-linker followed by a FLAG tag and a pair of 349 

stop codons. Overlap extension PCR was used to introduce mutations into the ANP32 350 

constructs which were then subcloned back into pCAGGS and confirmed by Sanger 351 

sequencing.  352 

Viral minigenome plasmid constructs 353 

Viruses and virus minigenome full strain names used through this study were 354 

A/Victoria/1975(H3N2; Victoria), A/England/195/2009(pH1N1; E195), 355 

A/England/687/2010(pH1N1; E687), A/Japan/WRAIR1059P/2008(H3N2; Japan), 356 

B/Florida/4/2006 (B/Florida), A/Anhui/2013(H7N9; Anhui), A/duck/Bavaria/1/1977(H1N1, 357 

Bavaria), A/turkey/England/50-92/1991(H5N1; 50-92), A/chicken/Pakistan/UDL-358 

01/2008(H9N2; UDL1/08), A/canine/New York/dog23/2009(H3N8; CIV H3N8), 359 

A/canine/Illinois/41915/2015(H3N2; CIV H3N2), A/equine/Richmond/1/2007(H3N8; 360 

Richmond), A/swine/England/453/2006(EAH1N1; sw/453), A/swine/Hubei/221/2016(H1N1; 361 

 on A
pril 14, 2020 by guest

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


Hubei), A/little yellow-shouldered bat/Guatemala/164/2009(H17N10; H17) and A/flat-faced 362 

bat/Peru/033/2010(H18N11; H18). Viral minigenome expression plasmids (for PB2, PB1, PA 363 

and NP) for H3N2 Victoria, H5N1 50-92, H1N1 E195, H1N1 E687 IBV Florida/06, H9N2 364 

UDL1/08 and H1N1 Bavaria have been previously described (11, 14, 22, 33). Viral 365 

minigenome plasmids for H1N1 swine/453, H3N2 Japan, H3N2 CIV, H3N8 CIV, Hubei and 366 

Richmond were subcloned from reverse genetics plasmids or cDNA into pCAGGS expression 367 

vectors using virus segment specific primers.  368 

pCAGGs minigenome reporters for H17N10 and H18N11 bat influenza viruses were a 369 

kind gift from Professor Martin Schwemmle, Universitätsklinikum Freiburg (34). pCAGGs 370 

minigenome reporters for H7N9 were a kind gift from Professor Munir Iqbal, The Pirbright 371 

Institute, UK. Reverse genetics plasmids for H3N8, Richmond were a kind gift from Adam 372 

Rash of the Animal Health Trust, Newmarket, UK. Reverse genetics plasmids for H3N2 CIV 373 

and H3N8 CIV were a kind gift from Dr. Colin Parrish of the Baker Institute for Animal Health, 374 

Cornell University (35, 36). Viral RNA from sw/453 was kindly provided by Dr. Sharon 375 

Brookes, Animal Plant and Health Agency, Weybridge, UK. 376 

Minigenome assay 377 

eHAP dKO cells were transfected in 24 well plates using lipofectamine® 3000 378 

(thermo fisher) with a mixture of plasmids; 100ng of pCAGGs ANP32/pCAGGs empty, 40ng 379 

of pCAGGs PB2, 40ng of pCAGGs PB1, 20ng of pCAGGs PA, 80ng of pCAGGs NP, 40ng of 380 

pCAGGs Renilla luciferase, 40ng of polI vRNA-Firefly luciferase. Transfections in wild-type 381 

eHap cells were performed similarly but without ANP32. Transfections in NPTr cells were 382 

carried out in 12 well plates using the same ratios above. 24 hours post-transfection cells 383 

were lysed with passive lysis buffer (Promega) and luciferase bio-luminescent signals were 384 
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read on a FLUOstar Omega plate reader (BMG Labtech) using the Dual-Luciferase® Reporter 385 

Assay System (Promega). Firefly signal was divided by Renilla signal to give relative 386 

luminescence units (RLU). All assays were performed with 2 or 3 separate repeats on 387 

different days, representative experiments are shown. 388 

Viruses replication assays 389 

All virus replication assays were performed with recombinant viruses containing the 390 

HA, NA and M genes of A/Puerto Rico/8/1934(H1N1; PR8) and the remaining genes from 391 

the avian influenza virus 50-92 containing PB2 627 E (wild type) or K, as has been described 392 

previously (11). eHAP dKO cells pre-transfected 24 hours prior with 400ng of pCAGGs-393 

ANP32A (chicken, swine or human) or pCAGGs-empty, or wild type eHAP or NPTr cells were 394 

infected at a multiplicity of infection of 0.001 in 6 well plates. Virus growth media, either 395 

IMDM or DMEM (for eHAP cells and NPTr cells, respectively) was made from serum-free 396 

media containing 1 μg/ml of N-tosyl-L-phenylalanine chloromethyl ketone-treated trypsin 397 

(Worthington-Biochemical). Virus containing supernatants were collected at 12, 24, 48, 72 398 

hours post-inoculation and stored at -80oC. Titres were assessed by infectious plaques on 399 

MDCKs. All time points were taken in triplicate and all virus growth curves were performed 400 

at least twice with a representative repeat shown. 401 

Split Luciferase Assay 402 

Split luciferase assays were undertaken in 293Ts seeded in 24 well plates. 30ng each 403 

of PB2, PA, and PB1, with the N-terminus of Gaussia Luciferase (Gluc1) tagged to its C-404 

terminus after a GGSGG linker, were co-transfected using lipofectamine 3000 along with 405 

ANP32A, tagged with the C-terminus of Gaussia Luciferase (Gluc2) on its C-terminus (after a 406 

GGSGG linker). 24 hours later cells were lysed in 100µl of Renilla lysis buffer (Promega) and 407 
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Gaussia activity was measured using a Renilla luciferase kit (Promega) on a FLUOstar Omega 408 

plate reader (BMG Labtech). Normalised luminescence ratios (NLR) were calculated by 409 

dividing the values of the tagged PB1 and ANP32 wells by the sum of the control wells which 410 

contained 1) untagged PB1 and free Gluc1 and 2) untagged ANP32A and free Gluc2 as 411 

described elsewhere (15, 37). 412 

Western Blotting 413 

To confirm equivalent protein expressing during mini-genome assays transfected 414 

cells were lysed in RIPA buffer (150mM NaCl, 1% NP-40, 0.5% Sodium deoxycholate, 0.1% 415 

SDS, 50mM TRIS, pH 7.4) supplemented with an EDTA-free protease inhibitor cocktail tablet 416 

(Roche). 417 

Membranes were probed with mouse α-FLAG (F1804, Sigma), rabbit α-Vinculin 418 

(AB129002, Abcam), rabbit α-PB2 (GTX125926, GeneTex) and mouse α-NP ([C43] ab128193, 419 

Abcam). The following near infra-red (NIR) fluorescent secondary antibodies were used: 420 

IRDye® 680RD Goat Anti-Rabbit (IgG) secondary antibody (Ab216777, Abcam) and IRDye® 421 

800CW Goat Anti-Mouse (IgG) secondary antibody (Ab216772, Abcam). Western Blots were 422 

visualised using an Odyssey Imaging System (LI-COR Biosciences). 423 

Immunofluorescence 424 

For investigating localisation of exogenously expressed ANP32 proteins, eHAP ANP32 425 

dKO cells were cultured on 8 well chambered cover slips (Ibidi) and transfected with 125 ng 426 

of the indicated FLAG-tagged ANP32 protein. Cells were fixed in PBS, 4% paraformaldehyde 427 

24 hours post transfection, then permeabilised in PBS, 0.2% Triton X-100. Cells were blocked 428 

in PBS, 2% bovine serum albumin and 0.1% tween. FLAG-tagged ANP32 proteins were 429 

detected using mouse anti-FLAG M2 primary antibody (Sigma), followed by goat anti-mouse 430 
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Alexa Fluor 568 (Invitrogen). Nuclei were counterstained with DAPI. Images were obtained 431 

using a Zeiss Cell Observer widefield microscope with ZEN Blue software, using a Plan-432 

Apochromat 63x 1.40-numerical aperture oil objective (Zeiss) and processed using FIJI 433 

software (38). 434 

For investigating endogenous levels of ANP32A in swine cells, NPTr cells were 435 

cultured in Nunc 24 well tissue culture plates on cover slips (VWR) preincubated with 10% 436 

(v/v) collagen (Rat’s tail, Sigma-Aldrich) in PBS. Cells were fixed with PBS, 4% 437 

paraformaldehyde for 20 minutes at room temperature. Cells were permeabilized with PBS, 438 

1% Triton X-100 for 10 minutes, followed by 3 washes with PBS 0.1% Triton X-100 and 439 

blocking with PBS, 5% (w/v) skim milk powder for 1 hour at room temperature. ANP32A was 440 

detected using ab189110 (Abcam) incubated in PBS, 5% (w/v) skim milk powder overnight at 441 

4°C, followed by incubation with anti-rabbit AlexaFluor488 (ab150077, Abcam). Phalloidin 442 

was detected using an AlexaFluor647 conjugated antibody (ab176759, Abcam), incubated 443 

during the secondary antibody application step at 1:10,000. Nuclei were counterstained 444 

with DAPI (1:15,000, Thermo Fisher). Images were captured with a Leica DMLB fluorescence 445 

microscope using Micro-Manager software at 40x or 20x for DAPI and Phalloidin 446 

respectively. Images were processed using FIJI software.  447 

Acknowledgements 448 

The authors would like to thank members of the Barclay lab, as well as Efstathios 449 

Giotis of Imperial College London for their scientific input and advice for this project.  450 

T.P.P. was supported by BBSRC grant BB/R013071/1; O.C.S. and P.B.L. were 451 

supported by Wellcome trust studentships; H.A.S., S.G.L. and C.B.A.W. were supported by 452 

BBSRC ISP award BB/P013740/1; H.A.S. and C.B.A.W. were partly funded by Genus plc; E.S. 453 

 on A
pril 14, 2020 by guest

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


was supported by an Imperial College President’s Scholarship; D.H.G. and W.S.B were 454 

supported by Wellcome Trust grant 205100; H.Z. was supported by National Natural Science 455 

Foundation of China grant, 31761133005; J.S.L. and W.S.B were supported by BBSRC grant 456 

BB/K002465/1; W.S.B was supported by BBSRC grant BB/S008292/1. 457 

References 458 

1. Li S, Shi Z, Jiao P, Zhang G, Zhong Z, Tian W, Long LP, Cai Z, Zhu X, Liao M, Wan XF. 2010. 459 
Avian-origin H3N2 canine influenza A viruses in Southern China. Infect Genet Evol 10:1286-8. 460 

2. Kandeil A, Gomaa MR, Shehata MM, El Taweel AN, Mahmoud SH, Bagato O, Moatasim Y, 461 
Kutkat O, Kayed AS, Dawson P, Qiu X, Bahl J, Webby RJ, Karesh WB, Kayali G, Ali MA. 2019. 462 
Isolation and Characterization of a Distinct Influenza A Virus from Egyptian Bats. J Virol 93. 463 

3. Geraci JR, St Aubin DJ, Barker IK, Webster RG, Hinshaw VS, Bean WJ, Ruhnke HL, Prescott JH, 464 
Early G, Baker AS, Madoff S, Schooley RT. 1982. Mass mortality of harbor seals: pneumonia 465 
associated with influenza A virus. Science 215:1129-31. 466 

4. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. 2005. Characterization of 467 
the 1918 influenza virus polymerase genes. Nature 437:889-93. 468 

5. Pensaert M, Ottis K, Vandeputte J, Kaplan MM, Bachmann PA. 1981. Evidence for the natural 469 
transmission of influenza A virus from wild ducts to swine and its potential importance for 470 
man. Bull World Health Organ 59:75-8. 471 

6. Long JS, Mistry B, Haslam SM, Barclay WS. 2019. Host and viral determinants of influenza A 472 
virus species specificity. Nat Rev Microbiol 17:67-81. 473 

7. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, 474 
Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A. 2009. Origins and evolutionary genomics 475 
of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122-5. 476 

8. Nelli RK, Kuchipudi SV, White GA, Perez BB, Dunham SP, Chang KC. 2010. Comparative 477 
distribution of human and avian type sialic acid influenza receptors in the pig. BMC Vet Res 478 
6:4. 479 

9. Byrd-Leotis L, Liu R, Bradley KC, Lasanajak Y, Cummings SF, Song X, Heimburg-Molinaro J, 480 
Galloway SE, Culhane MR, Smith DF, Steinhauer DA, Cummings RD. 2014. Shotgun glycomics 481 
of pig lung identifies natural endogenous receptors for influenza viruses. Proc Natl Acad Sci 482 
U S A 111:E2241-50. 483 

10. Van Poucke SG, Nicholls JM, Nauwynck HJ, Van Reeth K. 2010. Replication of avian, human 484 
and swine influenza viruses in porcine respiratory explants and association with sialic acid 485 
distribution. Virol J 7:38. 486 

11. Moncorge O, Long JS, Cauldwell AV, Zhou H, Lycett SJ, Barclay WS. 2013. Investigation of 487 
influenza virus polymerase activity in pig cells. J Virol 87:384-94. 488 

12. Clements ML, Subbarao EK, Fries LF, Karron RA, London WT, Murphy BR. 1992. Use of single-489 
gene reassortant viruses to study the role of avian influenza A virus genes in attenuation of 490 
wild-type human influenza A virus for squirrel monkeys and adult human volunteers. J Clin 491 
Microbiol 30:655-62. 492 

13. Subbarao EK, London W, Murphy BR. 1993. A single amino acid in the PB2 gene of influenza 493 
A virus is a determinant of host range. J Virol 67:1761-4. 494 

14. Long JS, Giotis ES, Moncorge O, Frise R, Mistry B, James J, Morisson M, Iqbal M, Vignal A, 495 
Skinner MA, Barclay WS. 2016. Species difference in ANP32A underlies influenza A virus 496 
polymerase host restriction. Nature 529:101-4. 497 

 on A
pril 14, 2020 by guest

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


15. Long JS, Idoko-Akoh A, Mistry B, Goldhill D, Staller E, Schreyer J, Ross C, Goodbourn S, 498 
Shelton H, Skinner MA, Sang H, McGrew MJ, Barclay W. 2019. Species specific differences in 499 
use of ANP32 proteins by influenza A virus. Elife 8. 500 

16. Reilly PT, Yu Y, Hamiche A, Wang L. 2014. Cracking the ANP32 whips: important functions, 501 
unequal requirement, and hints at disease implications. Bioessays 36:1062-71. 502 

17. Baker SF, Ledwith MP, Mehle A. 2018. Differential Splicing of ANP32A in Birds Alters Its 503 
Ability to Stimulate RNA Synthesis by Restricted Influenza Polymerase. Cell Rep 24:2581-504 
2588 e4. 505 

18. Staller E, Sheppard CM, Neasham PJ, Mistry B, Peacock TP, Goldhill DH, Long JS, Barclay WS. 506 
2019. ANP32 proteins are essential for influenza virus replication in human cells. J Virol 507 
doi:10.1128/JVI.00217-19. 508 

19. Zhang H, Zhang Z, Wang Y, Wang M, Wang X, Zhang X, Ji S, Du C, Chen H, Wang X. 2019. 509 
Fundamental Contribution and Host Range Determination of ANP32A and ANP32B in 510 
Influenza A Virus Polymerase Activity. J Virol 93. 511 

20. Park YH, Chungu K, Lee SB, Woo SJ, Cho HY, Lee HJ, Rengaraj D, Lee JH, Song CS, Lim JM, Han 512 
JY. 2020. Host-Specific Restriction of Avian Influenza Virus Caused by Differential Dynamics 513 
of ANP32 Family Members. J Infect Dis 221:71-80. 514 

21. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, 515 
Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, 516 
Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RA, Pappas C, Alpuche-Aranda CM, 517 
Lopez-Gatell H, Olivera H, Lopez I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD, Jr., 518 
Boxrud D, Sambol AR, Abid SH, St George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, 519 
Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, 520 
Clark PA, Beatrice ST, Donis R, et al. 2009. Antigenic and genetic characteristics of swine-521 
origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197-201. 522 

22. Elderfield RA, Watson SJ, Godlee A, Adamson WE, Thompson CI, Dunning J, Fernandez-523 
Alonso M, Blumenkrantz D, Hussell T, Investigators M, Zambon M, Openshaw P, Kellam P, 524 
Barclay WS. 2014. Accumulation of human-adapting mutations during circulation of 525 
A(H1N1)pdm09 influenza virus in humans in the United Kingdom. J Virol 88:13269-83. 526 

23. Liu Q, Qiao C, Marjuki H, Bawa B, Ma J, Guillossou S, Webby RJ, Richt JA, Ma W. 2012. 527 
Combination of PB2 271A and SR polymorphism at positions 590/591 is critical for viral 528 
replication and virulence of swine influenza virus in cultured cells and in vivo. J Virol 529 
86:1233-7. 530 

24. Domingues P, Hale BG. 2017. Functional Insights into ANP32A-Dependent Influenza A Virus 531 
Polymerase Host Restriction. Cell Rep 20:2538-2546. 532 

25. Mistry B, Long JS, Schreyer J, Staller E, Sanchez-David RY, Barclay WS. 2019. Elucidating the 533 
interactions between influenza virus polymerase and host factor ANP32A. J Virol 534 
doi:10.1128/JVI.01353-19. 535 

26. Yu Z, Cheng K, Sun W, Xin Y, Cai J, Ma R, Zhao Q, Li L, Huang J, Sang X, Li X, Zhang K, Wang T, 536 
Qin C, Qian J, Gao Y, Xia X. 2014. Lowly pathogenic avian influenza (H9N2) infection in 537 
Plateau pika (Ochotona curzoniae), Qinghai Lake, China. Vet Microbiol 173:132-5. 538 

27. Su S, Xing G, Wang J, Li Z, Gu J, Yan L, Lei J, Ji S, Hu B, Gray GC, Yan Y, Zhou J. 2016. 539 
Characterization of H7N2 Avian Influenza Virus in Wild Birds and Pikas in Qinghai-Tibet 540 
Plateau Area. Sci Rep 6:30974. 541 

28. Zhou J, Sun W, Wang J, Guo J, Yin W, Wu N, Li L, Yan Y, Liao M, Huang Y, Luo K, Jiang X, Chen 542 
H. 2009. Characterization of the H5N1 highly pathogenic avian influenza virus derived from 543 
wild pikas in China. J Virol 83:8957-64. 544 

29. Zhang H, Li H, Wang W, Wang Y, Han GZ, Chen H, Wang X. 2020. A unique feature of swine 545 
ANP32A provides susceptibility to avian influenza virus infection in pigs. PLoS Pathog 546 
16:e1008330. 547 

 on A
pril 14, 2020 by guest

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


30. Ma W, Kahn RE, Richt JA. 2008. The pig as a mixing vessel for influenza viruses: Human and 548 
veterinary implications. J Mol Genet Med 3:158-66. 549 

31. Li Y, Xiao H, Huang C, Sun H, Li L, Su J, Ma J, Liu D, Wang H, Liu W, Gao GF, Li X, Yan J. 2015. 550 
Distribution of sialic acid receptors and experimental infections with different subtypes of 551 
influenza A viruses in Qinghai-Tibet plateau wild pika. Virol J 12:63. 552 

32. Burkard C, Opriessnig T, Mileham AJ, Stadejek T, Ait-Ali T, Lillico SG, Whitelaw CBA, Archibald 553 
AL. 2018. Pigs Lacking the Scavenger Receptor Cysteine-Rich Domain 5 of CD163 Are 554 
Resistant to Porcine Reproductive and Respiratory Syndrome Virus 1 Infection. J Virol 92. 555 

33. Long JS, Howard WA, Nunez A, Moncorge O, Lycett S, Banks J, Barclay WS. 2013. The effect 556 
of the PB2 mutation 627K on highly pathogenic H5N1 avian influenza virus is dependent on 557 
the virus lineage. J Virol 87:9983-96. 558 

34. Juozapaitis M, Aguiar Moreira E, Mena I, Giese S, Riegger D, Pohlmann A, Hoper D, Zimmer 559 
G, Beer M, Garcia-Sastre A, Schwemmle M. 2014. An infectious bat-derived chimeric 560 
influenza virus harbouring the entry machinery of an influenza A virus. Nat Commun 5:4448. 561 

35. Feng KH, Gonzalez G, Deng L, Yu H, Tse VL, Huang L, Huang K, Wasik BR, Zhou B, Wentworth 562 
DE, Holmes EC, Chen X, Varki A, Murcia PR, Parrish CR. 2015. Equine and Canine Influenza 563 
H3N8 Viruses Show Minimal Biological Differences Despite Phylogenetic Divergence. J Virol 564 
89:6860-73. 565 

36. Rodriguez L, Nogales A, Reilly EC, Topham DJ, Murcia PR, Parrish CR, Martinez Sobrido L. 566 
2017. A live-attenuated influenza vaccine for H3N2 canine influenza virus. Virology 504:96-567 
106. 568 

37. Cassonnet P, Rolloy C, Neveu G, Vidalain PO, Chantier T, Pellet J, Jones L, Muller M, Demeret 569 
C, Gaud G, Vuillier F, Lotteau V, Tangy F, Favre M, Jacob Y. 2011. Benchmarking a luciferase 570 
complementation assay for detecting protein complexes. Nat Methods 8:990-2. 571 

38. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden 572 
C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona 573 
A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676-82. 574 

39. Huyton T, Wolberger C. 2007. The crystal structure of the tumor suppressor protein pp32 575 
(Anp32a): structural insights into Anp32 family of proteins. Protein Sci 16:1308-15. 576 

40. Schrodinger, LLC. 2010. The PyMOL Molecular Graphics System, Version 1.3r1, 577 
https://www.pymol.org/. 578 

Figure legends 579 

Figure 1 – Most common mammalian influenza hosts have two ANP32 proteins capable of 580 

supporting influenza polymerase. a) Minigenome assays performed in human eHAP dKO 581 

with ANP32 proteins from different avian or mammalian species co-transfected. Green bars 582 

indicate species the influenza virus polymerase was isolated from, orange bars indicate 583 

recent species the virus has jumped from. Data indicates triplicate repeats plotted as mean 584 

with standard deviation. Data for each polymerase normalised to chicken ANP32A. b) 585 

Western blot assay showing protein expression levels of FLAG-tagged ANP32 proteins, NP 586 

and PB2 during a minigenome assay. c) Immunofluorescence images showing nuclear 587 
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localisation of all FLAG-tagged ANP32 proteins (red) tested. Nuclei are stained with DAPI 588 

(blue). Abbreviations: ch – chicken, hu – human, sw – swine, eq – equine.  Statistical 589 

significance was determined by one-way ANOVA with multiple comparisons against empty 590 

vector or between ANP32 proteins from the same host. *, 0.05 ≥ P > 0.01; **, 0.01 ≥ P > 591 

0.001; ***, 0.001 ≥ P > 0.0001; ****, P ≤ 0.0001. 592 

 593 

Figure 2. swANP32A can support the activity of minimally mammalian-adapted or 594 

completely non-adapted polymerases. Minigenome assays of swine (a) and avian (b) 595 

polymerases performed in human eHAP dKO cells with ANP32 proteins from different avian 596 

or mammalian species co-transfected. Green bars indicate species the influenza virus 597 

polymerase was isolated from, orange bars indicate recent species the virus has jumped 598 

from. Data indicates triplicate repeats plotted as mean with standard deviation. Data for 599 

each polymerase normalised to chicken ANP32A. c) ANP32 protein titrations with three 600 

different virus polymerase constellations. ANP32 expression plasmids were diluted in a 601 

series of 3x dilutions starting with 100ng. Data indicates triplicate repeats plotted as mean 602 

with standard deviation. Statistical significance was determined by one-way ANOVA with 603 

multiple comparisons against empty vector. **, 0.01 ≥ P > 0.001; ***, 0.001 ≥ P > 0.0001; 604 

****, P ≤ 0.0001. 605 

 606 

Figure 3. Swine ANP32A can support avian influenza virus replication better than human 607 

ANP32A. Comparative growth kinetics of isogenic, recombinant avian influenza viruses 608 

(A/turkey/England/50-92/1991(H5N1)) PB2 627E (wild type) vs E627K in (a) wild-type 609 

human eHAP cells and swine NPTr cells and (b) eHAP dKO cells pre-expressing empty vector, 610 

chicken, swine or human ANP32A. Cells were infected at a multiplicity of infection (MOI) of 611 
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0.001. All time points taken in triplicate and mean viral titres determined by plaque assay in 612 

MDCK cells with standard deviation shown. Graph is representative data of at least two 613 

independent repeats showing the same trends. Statistical significance determined by 614 

multiple Student’s t-tests in panel (a) and one-way ANOVA with multiple comparisons in 615 

panel (b). Value shown on graph in panel (a) indicate fold-change in mean titres. Dotted lines 616 

on graphs indicate limits of detection. *, 0.05 ≥ P > 0.01; **, 0.01 ≥ P > 0.001; ***, 0.001 ≥ P 617 

> 0.0001; ****, P ≤ 0.0001. 618 

 619 

Figure 4. Third-wave pandemic H1N1 viruses adapt to human ANP32 proteins through the 620 

PA mutation N321K.  a) Minigenome assays of polymerases derived from first- and third-621 

wave pH1N1 viruses (E195 and E687, respectively) performed in wild-type human eHAP cells 622 

and swine NPTr cells. Data indicates triplicate repeats plotted as mean with standard 623 

deviation. Data normalised to E195 wild type.  b) Minigenome assays performed in human 624 

eHAP cells with ANP32A and ANP32B knocked out and complemented with ANP32 proteins 625 

from human or swine following co-transfection of expression plasmids. Data indicates 626 

triplicate repeats plotted as mean with standard deviation. Data normalised to E195 wt with 627 

chicken ANP32A. All experiments in parts a) and b) performed on two separate occasions 628 

with a representative repeat shown. c) Indirect immunofluorescence images showing 629 

endogenous nuclear localisation of swine ANP32A in swine NPTr cells. Statistical significance 630 

was determined by one-way ANOVA with multiple comparisons. ****, P ≤ 0.0001. 631 

 632 

Figure 5. The enhanced pro-viral activity of swine ANP32A maps to amino acids in LRR4 633 

and the central domain. a) Minigenome assays with polymerase constellations from a swine 634 
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or an avian influenza virus performed in human eHAP dKO cells with human/swine ANP32A 635 

reciprocal mutants expressed. Data indicates triplicate repeats plotted as mean with 636 

standard deviation repeated on two separate occasions with a representative repeat shown. 637 

Data normalised to each polymerase with swine ANP32A wild type.  b) Western blot analysis 638 

showing expression levels of human/swine ANP32A from minigenome assays. c) Crystal 639 

structure of ANP32A (PDBID: 2JE1) with residues found to affect pro-viral activity mapped 640 

(39). The unresolved, unstructured LCAR shown as a yellow line. Schematic made using 641 

PyMol (40). Statistical significance was determined by one-way ANOVA with multiple 642 

comparisons. *, 0.05 ≥ P > 0.01; ***, 0.001 ≥ P > 0.0001; ****, P ≤ 0.0001. 643 

 644 

Figure 6. Amino acid residues responsible for the enhanced support of polymerase activity 645 

of swine ANP32A also mediate increased binding to influenza trimeric polymerase. a) Split 646 

luciferase assays showing the relative binding of different ANP32 proteins to trimeric 647 

polymerase from human pH1N1 or avian H5N1 viruses. PB1 was tagged with the N-terminal 648 

part of Gaussia luciferase while ANP32 proteins were tagged with the C-terminal part. NLR, 649 

normalised luminescence ratio, calculated from the ratio between tagged and untagged 650 

ANP32/PB1 pairs. Assay performed in 293T cells. Data indicates triplicate repeats plotted as 651 

mean with standard deviation, repeated across two separate experiments with 652 

representative data shown. Statistical significance was determined by one-way ANOVA with 653 

multiple comparisons between the swA and huA wild-types and mutants. ***, 0.001 ≥ P > 654 

0.0001; ****, P ≤ 0.0001. b) Minigenome assays with reconstituted polymerases from 3 655 

different influenza viruses, performed in human eHAP cells with ANP32A and ANP32B 656 

knocked out and complemented with wild type swine ANP32A or B or N129I mutants 657 

thereof. Data indicates triplicate repeats plotted as mean with standard deviation, repeated 658 
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across two separate experiments with representative data shown. Data normalised to each 659 

polymerase with wild type swine ANP32A. c) Western blot assay showing protein expression 660 

levels of FLAG-tagged swine ANP32 wild type or N129I proteins during a minigenome assay. 661 

d) Phylogenetic tree of mammalian ANP32A proteins. Species which contain the highly pro-662 

viral 156S shown in red, species with 156P shown in black. Phylogenetic trees made using 663 

the neighbour-joining method based on amino acid sequence. Statistical significance was 664 

determined by one-way ANOVA with multiple comparisons against empty vector. ****, P ≤ 665 

0.0001. 666 
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