174 research outputs found

    Breast cancer classification through multivariate radiomic time series analysis in DCE-MRI sequences

    Get PDF
    Breast cancer is the most prevalent disease that poses a significant threat to women’s health. Despite the Dynamic Contrast-Enhanced MRI (DCE-MRI) has been widely used for breast cancer classification, its diagnostic performance is still suboptimal. In this work, the Radiomic workflow was implemented to classify the whole DCE-MRI sequence based on the distinction in contrast agent uptake between benign and malignant lesions. The radiomic features extracted from each of the seven time instants within the DCE-MRI sequence were fed into a multi-instant features selection strategy to select the discriminative features for time series classification. Several time series classification algorithms including Rocket, MultiRocket, K-Nearest Neighbor, Time Series Forest, and Supervised Time Series Forest were compared. Firstly, a univariate classification was performed to find the five most informative radiomic series, and then, a multivariate time series classification was implemented via a voting mechanism. The Multivariate Rocket model was the most accurate (Accuracy = 0.852, AUC-ROC = 0.852, Specificity = 0.823, Sensitivity = 0.882). The intelligible radiomic features enabled model findings explanations and clinical validation. In particular, the Energy and TotalEnergy were among the most important features, and the most descriptive for the change in signal intensity, which is the main effect of the contrast agent

    Interpretable Radiomic Signature for Breast Microcalcification Detection and Classification

    Get PDF
    Breast microcalcifications are observed in 80% of mammograms, and a notable proportion can lead to invasive tumors. However, diagnosing microcalcifications is a highly complicated and error-prone process due to their diverse sizes, shapes, and subtle variations. In this study, we propose a radiomic signature that effectively differentiates between healthy tissue, benign microcalcifications, and malignant microcalcifications. Radiomic features were extracted from a proprietary dataset, composed of 380 healthy tissue, 136 benign, and 242 malignant microcalcifications ROIs. Subsequently, two distinct signatures were selected to differentiate between healthy tissue and microcalcifications (detection task) and between benign and malignant microcalcifications (classification task). Machine learning models, namely Support Vector Machine, Random Forest, and XGBoost, were employed as classifiers. The shared signature selected for both tasks was then used to train a multi-class model capable of simultaneously classifying healthy, benign, and malignant ROIs. A significant overlap was discovered between the detection and classification signatures. The performance of the models was highly promising, with XGBoost exhibiting an AUC-ROC of 0.830, 0.856, and 0.876 for healthy, benign, and malignant microcalcifications classification, respectively. The intrinsic interpretability of radiomic features, and the use of the Mean Score Decrease method for model introspection, enabled models' clinical validation. In fact, the most important features, namely GLCM Contrast, FO Minimum and FO Entropy, were compared and found important in other studies on breast cancer

    Assessing Coastal Sustainability: A Bayesian Approach for Modeling and Estimating a Global Index for Measuring Risk

    Get PDF
    Integrated Coastal Zone Management is an emerg- ing research area. The aim is to provide a global view of dif- ferent and heterogeneous aspects interacting in a geographical area. Decision Support Systems, integrating Computational Intelligence methods, can be successfully used to estimate use- ful anthropic and environmental indexes. Bayesian Networks have been widely used in the environmental science domain. In this paper a Bayesian model for estimating the Sustainable Coastal Index is presented. The designed Bayesian Network consists of 17 nodes, hierarchically organized in 4 layers. The first layer is initialized with the season and the physiographic region information. In the second layer, the first-order in- dexes, depending on raw data, of physiographic regions are computed. The third layer estimates the second-order indexes of the analyzed physiographic regions. In the fourth layer, the global Sustainable Coastal Index is inferred. Processed data refers to 13 physiographic regions in the Province of Trapani, western Sicily, Italy. Gathered data describes the environ- mental information, the agricultural, fisheries, and economi- cal behaviors of the local population and land. The Bayesian Network was trained and tested using a real dataset acquired between 2000 and 2006. The developed system presents inter- esting results

    Explainable Machine-Learning Models for COVID-19 Prognosis Prediction Using Clinical, Laboratory and Radiomic Features

    Get PDF
    The SARS-CoV-2 virus pandemic had devastating effects on various aspects of life: clinical cases, ranging from mild to severe, can lead to lung failure and to death. Due to the high incidence, data-driven models can support physicians in patient management. The explainability and interpretability of machine-learning models are mandatory in clinical scenarios. In this work, clinical, laboratory and radiomic features were used to train machine-learning models for COVID-19 prognosis prediction. Using Explainable AI algorithms, a multi-level explainable method was proposed taking into account the developer and the involved stakeholder (physician, and patient) perspectives. A total of 1023 radiomic features were extracted from 1589 Chest X-Ray images (CXR), combined with 38 clinical/laboratory features. After the pre-processing and selection phases, 40 CXR radiomic features and 23 clinical/laboratory features were used to train Support Vector Machine and Random Forest classifiers exploring three feature selection strategies. The combination of both radiomic, and clinical/laboratory features enabled higher performance in the resulting models. The intelligibility of the used features allowed us to validate the models' clinical findings. According to the medical literature, LDH, PaO2 and CRP were the most predictive laboratory features. Instead, ZoneEntropy and HighGrayLevelZoneEmphasis - indicative of the heterogeneity/uniformity of lung texture - were the most discriminating radiomic features. Our best predictive model, exploiting the Random Forest classifier and a signature composed of clinical, laboratory and radiomic features, achieved AUC=0.819, accuracy=0.733, specificity=0.705, and sensitivity=0.761 in the test set. The model, including a multi-level explainability, allows us to make strong clinical assumptions, confirmed by the literature insights

    Usability analysis of a novel biometric authentication approach for android-based mobile devices

    Get PDF
    Mobile devices are widely replacing the standard personal computers thanks to their small size and user-friendly use. As a consequence, the amount of information, often confidential, exchanged through these devices is raising. This makes them potential targets of malicious network hackers. The use of simple passwords or PIN are not sufficient to provide a suitable security level for those applications requiring high protection levels on data and services. In this paper a biometric authentication system, as a running Android application, has been developed and implemented on a real mobile device. A system test on real users has been also carried out in order to evaluate the human-machine interaction quality, the recognition accuracy of the proposed technique, and the scheduling latency of the operating system and its degree of acceptance. Several measures, such as system usability, users satisfaction, and tolerable speed for identification, have been carried out in order to evaluate the performance of the proposed approach

    Illumination Correction on Biomedical Images

    Get PDF
    RF-Inhomogeneity Correction (aka bias) artifact is an important research field in Magnetic Resonance Imaging (MRI). Bias corrupts MR images altering their illumination even though they are acquired with the most recent scanners. Homomorphic Unsharp Masking (HUM) is a filtering technique aimed at correcting illumination inhomogeneity, but it produces a halo around the edges as a side effect. In this paper a novel correction scheme based on HUM is proposed to correct the artifact mentioned above without introducing the halo. A wide experimentation has been performed on MR images. The method has been tuned and evaluated using the simulated Brainweb image database. In this framework, the approach has been compared successfully against the Guillemaud filter and the SPM2 method. Moreover, the method has been successfully applied on several real MR images of the brain (0.18 T, 1.5 T and 7 T). The description of the overall technique is reported along with the experimental results that show its effectiveness in different anatomical regions and its ability to compensate both underexposed and overexposed areas. Our approach is also effective on non-radiological images, like retinal ones

    An Advanced Technique for User Identification Using Partial Fingerprint

    Get PDF
    User identification is a very interesting and complex task. Invasive biometrics is based on traits uniqueness and immutability over time. In forensic field, fingerprints have always been considered an essential element for personal recognition. The traditional issue is focused on full fingerprint images matching. In this paper an advanced technique for personal recognition based on partial fingerprint is proposed. This system is based on fingerprint local analysis and micro-features, endpoints and bifurcations, extraction. The proposed approach starts from minutiae extraction from a partial fingerprint image and ends with the final matching score between fingerprint pairs. The computation of likelihood ratios in fingerprint identification is computed by trying every possible overlapping of the partial image with complete image. The first experimental results conducted on the PolyU (Hong Kong Polytechnic University) free database show an encouraging performance in terms of identification accuracy

    An Embedded Biometric Sensor for Ubiquitous Authentication

    Get PDF
    Communication networks and distributed technologies move people towards the era of ubiquitous computing. An ubiquitous environment needs many authentication sensors for users recognition, in order to provide a secure infrastructure for both user access to resources and services and information management. Today the security requirements must ensure secure and trusted user information to protect sensitive data resource access and they could be used for user traceability inside the platform. Conventional authentication systems, based on username and password, are in crisis since they are not able to guarantee a suitable security level for several applications. Biometric authentication systems represent a valid alternative to the conventional authentication systems providing a flexible einfrastructure towards an integrated solution supporting the requirement for improved inter-organizational functionality. In this work the study and the implementation of a fingerprintsbased embedded biometric system is proposed. Typical strategies implemented in Identity Management Systems could be useful to protect biometric information. The proposed sensor can be seen as a self-contained sensor: it performs the all elaboration steps on board, a necessary requisite to strengthen security, so that sensible data are securely managed and stored inside the sensor, without any data leaking out. The sensor has been prototyped via an FPGA-based platform achieving fast execution time and a good final throughput. Resources used, elaboration times of the sensor are reported. Finally, recognition rates of the proposed embedded biometric sensor have been evaluated considering three different databases: the FVC2002 reference database, the CSAI/Biometrika proprietary database, and the CSAI/Secugen proprietary database. The best achieved FAR and FRR indexes are respectively 1.07% and 8.33%, with an elaboration time of 183.32 ms and a working frequency of 22.5 MHz

    Design Exploration of AES Accelerators on FPGAs and GPUs, Journal of Telecommunications and Information Technology, 2017, nr 1

    Get PDF
    The embedded systems are increasingly becoming a key technological component of all kinds of complex technical systems and an exhaustive analysis of the state of the art of all current performance with respect to architectures, design methodologies, test and applications could be very interesting. The Advanced Encryption Standard (AES), based on the well-known algorithm Rijndael, is designed to be easily implemented in hardware and software platforms. General purpose computing on graphics processing unit (GPGPU) is an alternative to recongurable accelerators based on FPGA devices. This paper presents a direct comparison between FPGA and GPU used as accelerators for the AES cipher. The results achieved on both platforms and their analysis has been compared to several others in order to establish which device is best at playing the role of hardware accelerator by each solution showing interesting considerations in terms of throughput, speedup factor, and resource usage. This analysis suggests that, while hardware design on FPGA remains the natural choice for consumer-product design, GPUs are nowadays the preferable choice for PC based accelerators, especially when the processing routines are highly parallelizable
    corecore