
Received 18 September 2023, accepted 22 October 2023, date of publication 26 October 2023, date of current version 3 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3327808

Explainable Machine-Learning Models for
COVID-19 Prognosis Prediction Using Clinical,
Laboratory and Radiomic Features
FRANCESCO PRINZI 1, CARMELO MILITELLO 2, NICOLA SCICHILONE 3,
SALVATORE GAGLIO 2,4, (Life Member, IEEE), AND SALVATORE VITABILE 1
1Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
2Institute for High-Performance Computing and Networking (ICAR-CNR), Italian National Research Council, 90146 Palermo, Italy
3Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE),
University of Palermo, 90127 Palermo, Italy
4Department of Engineering, University of Palermo, 90128 Palermo, Italy

Corresponding author: Carmelo Militello (carmelo.militello@cnr.it)

This work was partially funded by the European Union – NextGenerationEU – MUR D.M. funds 737/2021 – research project
‘‘A Trustworthy Clinical Decision Support System for non-communicable diseases detection and prediction.’’

ABSTRACT The SARS-CoV-2 virus pandemic had devastating effects on various aspects of life: clinical
cases, ranging from mild to severe, can lead to lung failure and to death. Due to the high incidence, data-
driven models can support physicians in patient management. The explainability and interpretability of
machine-learning models are mandatory in clinical scenarios. In this work, clinical, laboratory and radiomic
features were used to train machine-learning models for COVID-19 prognosis prediction. Using Explainable
AI algorithms, a multi-level explainable method was proposed taking into account the developer and the
involved stakeholder (physician, and patient) perspectives. A total of 1023 radiomic features were extracted
from 1589 Chest X-Ray images (CXR), combined with 38 clinical/laboratory features. After the pre-
processing and selection phases, 40 CXR radiomic features and 23 clinical/laboratory features were used to
train Support Vector Machine and Random Forest classifiers exploring three feature selection strategies. The
combination of both radiomic, and clinical/laboratory features enabled higher performance in the resulting
models. The intelligibility of the used features allowed us to validate the models’ clinical findings. According
to the medical literature, LDH, PaO2 and CRP were the most predictive laboratory features. Instead,
ZoneEntropy and HighGrayLevelZoneEmphasis - indicative of the heterogeneity/uniformity of lung texture
- were the most discriminating radiomic features. Our best predictive model, exploiting the Random Forest
classifier and a signature composed of clinical, laboratory and radiomic features, achieved AUC=0.819,
accuracy=0.733, specificity=0.705, and sensitivity=0.761 in the test set. The model, including a multi-level
explainability, allows us to make strong clinical assumptions, confirmed by the literature insights.

INDEX TERMS Chest X-ray images, clinical and laboratory features, COVID-19 prognosis, explainable
AI, machine learning classifiers, predictive models, radiomic features.

I. INTRODUCTION
The worldwide diffusion of the SARS-CoV-2 virus had
devastating effects on various aspects of life, including the
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economy, society, and public health. Despite the spread of
non-invasive variants and the availability of vaccines have
reducedmortality rates, early prediction of health-threatening
symptoms still remains a critical task [6], [9], [26].

While chest CT scans have demonstrated high sensitivity
in detecting COVID-19 [1], [29], CXRs have proven to
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be a more sustainable and efficient means of handling
the high volume of daily cases [24]. Furthermore, when
CXR images are combined with clinical and laboratory
features, their prognostic performance increases [4], [52],
[64]. In fact, several works have proposed Machine Learning
(ML) models to improve the COVID-19 prognosis prediction
process. However, model accuracy optimization is not the
only requirement. In critical contexts, such as in clinical
settings, it is also essential to ensure the explainability of the
trained models. The models have to be validated technically
by engineers to enhance their robustness and reliability,
and clinically by physicians to verify any existing clinical
evidence and confirm their effectiveness. One of the main
methods of inferring model explainability is through the
use of inherently interpretable inputs. While clinical and
laboratory features are intelligible (i.e., understandable by
humans), imaging features can be uninterpretable depending
on their extraction process. For example, despite several
methods being proposed to explain the features extracted via
deep neural networks, their nature is inherently unintelligible.
These methods are focused on saliency map computation to
highlight the areas that most influence the model decision
[34], [35]. As an illustration, the Grad-CAM method demon-
strated a limitation in differentiating multifocal lesions,
as evidenced by recent studies [40], [56]. Furthermore, it has
been shown that different methods can produce conflicting
results, as reported in a recent study [69]. In addition,
these methods enable just a local explanation for a specific
instance (i.e., patient), not allowing a global validation of
the systems. For these reasons, saliency maps have still to
demonstrate to be an objective tool for validating clinical
findings.

In recent years, especially in the radiology field, Radiomics
has emerged as a very powerful tool for feature extraction.
Radiomics aims to extract highly informative quantitative
features from radiological images. The extracted radiomic
features provide a complementary point of view to the
qualitative analysis performed by the radiologist. In fact,
through the use of radiomic features, it is possible to train
data-driven models to predict a clinical outcome. It has
been shown that doctors’ diagnostic performance improves
when supported by quantitative features [15], [27]. The
main advantage of radiomic features lies in their inherent
interpretability: it is well known the meaning each feature
expresses. In recent years, there has been a notable surge
in radiomic research endeavours geared towards enhancing
diagnostic capabilities. However, these efforts are often
hampered by deficiencies in terms of repeatability and
explainability. To guarantee the repeatability of radiomic
analyses, it is imperative tometiculously address each facet of
the workflow, encompassing image acquisition, image recon-
struction, segmentation, feature definition, feature extraction,
feature selection, andmodel setup [7], [50]. In addition, many
studies in the literature, provide only an informative radiomic
signature without exploring in depth any clinical explanation
or interpretation.

Intelligible inputs are the first step toward an inter-
pretable model. However, the ML algorithms have also to
be explained. Although Support Vector Machine (SVM)
and Tree Ensemble are defined as black boxes, many
techniques were developed [18], [31] for their post-hoc
explanation [32]. These techniques provide global and
local explanations, enabling the findings introspection from
the healthcare process stakeholders (clinicians, techni-
cians, nurses, general practitioners, healthcare makers, and
patients) [10].

In this work the conducted analysis aimed at defining
predictive models for COVID-19 prognosis prediction. Uti-
lizing clinical, laboratory, and radiomic features as inputs,
we implemented two distinct machine learning classifiers,
namely Support Vector Machine (SVM) and Random Forest
(RF), alongside employing several feature selection strate-
gies. First of all, unimodal models were evaluated, exploiting
only clinical and laboratory data, and only CXR radiomic
features. Successively, multimodal models were considered,
combining both clinical and CXR radiomics. The above-
listed ML algorithms and the use of intrinsically interpretable
features, allowed us to propose the multi-level explanation,
depicted in Figure 1. In particular, the global explanation is
used for model introspection to assess the significance of
individual features, identify phenomena such as distributional
drift, and validate any pre-existing clinically proven evidence.
The local explanation is used to explain the predictions
for each patient. Intrinsically explainable inputs combined
with global and local explanations lay the basis for the
development of an eXplainable Clinical Decision Support
System (X-CDSS).

The main contributions of this work are:
• an in-depth analysis of two ML classifiers (i.e., Support
VectorMachine and RandomForest) to define predictive
models for the prognosis (i.e., MILD vs. SEVERE) of
COVID-19 patients;

• the implementation of different feature selection strate-
gies for the identification of the optimal signa-
ture composed of radiomic and clinical/laboratory
features;

• a multi-level explainability taking into account the
developer, physician, and patient perspectives, assessing
the role of each feature and quantifying their contribu-
tion to the final decision.

The remaining of the paper is organized as follows:
Section II analyzes the literature works to support the
clinical decision in the management of COVID-19 dis-
ease; Section III describes the conducted study, detail-
ing each step of the processing pipeline, to set up the
ML predictive models; Section IV illustrates the obtained
experimental results, concerning each specific step and the
performance of the built-up models, both in the train-
ing/validation phase and in the testing phase; Section V
discuss the obtained results, highlighting the clinical view-
point of the findings; finally, conclusions are provided
in Section VI.
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FIGURE 1. The proposed multilevel explainability makes it possible to focus on the needs of key stakeholders involved
in the healthcare process.

II. RELATED WORK
With the proliferation of the COVID-19 pandemic, there
has been a growing surge of interest in radiomic analysis
concerning the ability to infer further knowledge about
diagnosis, severity [52], [57], [68] or prognosis [4], [8], [54],
[56], [64], [67] of the disease. These studies were conducted
considering both unimodal data (i.e. Computer Tomography
(CT) or CXR imaging) [54], [67], [68] and multimodal data
(i.e. imaging and clinical) [4], [52], [57], [64]. Regarding
the imaging modality, while CT scans offer high-quality
images, CXRs enable the NHS to perform numerous daily
examinations rapidly and efficiently, ensuring sustainability.

Angeli et al. [4] evaluated the prognostic value of CT
integrated with clinical and laboratory data. The Pulmonary
Involvement (PI) score and the Pulmonary Consolidation
(PC) score were extracted from 301 CT images. Uni-
variate and Multivariate Logistic Regressions were used
for feature selection and model training to predict the
improvement/recovery vs. ICU admission or death. There
was no notable association observed for the PC score,
yielding an area under the curve (AUC) of 0.722 when
considering only the PI score. However, when integrating
the PI and PC visual-imaging features with demographic,
comorbidities, and laboratory features, the AUC improved to
0.841. In [54], 14339 CT images were used to predict overall
survival outcomes (alive vs. deceased). Texture, intensity,

and shape radiomic features were extracted considering
the lungs segmentation computed through COLI-Net [53]
and selected considering ANOVA, Kruskal-Wallis, Recursive
Feature Elimination and Relief methods. Logistic regression,
LASSO, Linear discriminant Analysis, Random Forest,
AdaBoost, Naive Bayes, and Multi-Layer Perceptron (MLP)
were used as classifiers. The combination of ANOVA
features selector and Random Forest resulted in the highest
performance with an AUC, sensitivity, and specificity of 0.83
(CI 95%: 0.81–0.85), 0.81, and 0.72, respectively. In [64],
a court of 188 patients was used to predict aggravation
or improvement of disease progression. Regions of Interest
(ROIs) encompassing lesions were automatically generated
from the 188 CT scans and subsequently subjected to manual
revision. A total of 1218 radiomic features were extracted
considering original images, Laplacian of Gaussian Filters,
and Wavelet Transforms. They integrated radiomic with
demographic and laboratory features, selected via ICC and
F-test methods. Linear regression, SVM, Decision Tree, RF,
and XGBoost were used to test only clinical signature,
only radiomic signature, and their union. For the radiomics,
clinical, and combined features, 0.843 vs. 0.813 vs. 0.865 of
AUC were obtained in the test set, respectively. In [68],
284 CT images were used to classify the progression of
COVID-19 into four groups: early, progressive, severe, and
absorption. The ROIs were manually segmented, and a
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total of 1688 radiomic features were extracted including
original features and considering logarithm, wavelet, expo-
nent, gradient, square, square root, and local binary pattern.
Thirty-eight radiomic features were selected using the select
K-best method and the ElasticNet algorithms. The SVM
was trained, obtaining a microaverage AUC of 0.89 and a
macroaverage AUC of 0.90 on the test dataset. The study
described in [52] utilized a primary cohort of 156 COVID-19
patients and a validation cohort of 104 COVID-19 patients
from three different hospitals. A radiomic nomogram was
developed to identify the severity of infection in COVID-
19 patients (Mild/Moderate vs. Severe/Critical). They used
clinical information and laboratory examinations combined
with radiomic features. In particular, a Multi-Task U-Net
2D with a single encoder and two decoders was used for
lesion and lung segmentation. Finally, the LASSO regression
was applied to select the radiomic signature and compute
the Rad-Score as a linear combination between feature
values and their regression coefficients. A multivariate
Logistic Regression was trained with the radiomic signa-
ture, Rad-Score, comorbidity, and abnormal White Blood
Cell counts obtaining an AUC of 0.978 in the validation
cohort.

In [57], 820 CXR images were used for prognosis pre-
diction (MILD vs. SEVERE). They explored the predictivity
of only clinical/laboratory features, only radiomic, and their
combination. For clinical features they evaluated shallow
learning andDeep Learning (DL) approaches, SVMandMLP
respectively. For CXR images alone and the combination,
they evaluated three approaches: handcrafted, hybrid, and
end-to-end deep learning. In particular, for the handcrafted
approach, radiomic features were extracted using a pixel-
based approach [44] and exploiting the lungs segmented
through U-Net and manually refined. For the hybrid
approach, several Convolutional Neural Networks (CNNs)
(such as AlexNet, VGG, ResNet, DensNet, SqueezeNet,
MobileNet and their different variants) were trained for deep
features extraction. Then the deep features were concatenated
with the clinical and laboratory ones and selected viaMutual
Information and Recursive Features Elimination. SVM,
Logistic Regression, and RF were used as classifiers. For the
end-to-end DL approach, deep features extracted using CNNs
(with ResNet50 performing the best) were concatenated
with clinical features. These deep features from the CNN
were processed through a dense structure, and similarly,
the clinical features underwent processing through a dense
structure before being combined. This architecture was
then trained with Stochastic Gradient Descent. Considering
only CXR imaging, deep features provide higher accuracy
than radiomic features (0.705 vs. 0.65). Performance was
higher for all three approaches when clinical and imaging
features were combined. By far, higher accuracywas obtained
when considering the hybrid approach, using GoogleNet
and Logistic Regression. An explanation of the results was
provided through Grad-CAM. Also in [5] several deep
architectures based on ResNet-18 and DenseNet-121 were

proposed. Among the proposed approaches, the best one
was DenseNet-121— pre-trained on CheXpert dataset (224k
CXR images) and tested on CORDA-SLG dataset (451 CXR
images) — able to classify between positive and negative
COVID-19 patients. Sensitivity=0.79, specificity=0.82, and
AUC=0.84 was computed with the best classifier. To imple-
ment explainability Grad-CAM was used.

In [17] several convolutional architectures and dense
networks for prognosis prediction (MILD vs. SEVERE)
were explored. They used the same dataset of [57], and an
additional 283 CXRs were considered as external validation.
Among the various trained networks, the ensemble between
three CNNs (GoogleNet-based, VGG-based, and ResNet-
based) and one MLP for clinical data was used. An accuracy
of 77.90 ± 1.27 was obtained, considering both imaging
and clinical features. They also used Grad-CAM for saliency
maps computation of the three CNNs, and Integrated
Gradient for MLP. In [8] the authors proposed the Brixia
score to assess COVID-19 infection. Each image was divided
into 6 zones considering the upper, middle and lower parts
of the right and left lungs. Each zone is assigned a score
from 0 to 3 to indicate the impairment of the zone, and finally,
each score is summed to form a score between 0 and 18.
For 100 CXRs, the Brixia score was manually assigned by
an experienced thoracic radiologist and used to distinguish
between recovery or death patients. Weighted Kappa (kw)
and Mann-Whitney U-test were used to compare CXR scores
with the final outcome in selected patients (kw, 0.82; 95% CI,
0.79–0.86). In [56], the BS-net was proposed for Brixia score
prediction, using 5000 CXR. The authors exploited a semi-
quantitative approach in order to leverage the sensitivity of
CXRs and the ability of radiologists to identify COVID-19
pneumonia. In particular, the BS-Net was implemented as
an end-to-end scheme, to segment, align, and predict the
Brixia score. The ResNet-18 was used for features extraction;
the Neasted U-Net [71] for segmentation; the alignment
introducing synthetics transformation such as rotation, scale,
shift, elastic transformation, and grid and optical distortion;
an optional hard self-attention; the ROI pooling to obtain
the 3 × 2 matrix representing the Brixia score values;
the Feature Pyramid Network [30] to combine multi-scale
feature maps. They used a sparse categorical cross entropy
(SCCE) with a Mean Absolute Error contribution, to solve
the Brixia score prediction as a joint-multi-class classification
and regression. The BS-Net demonstrates a high degree of
accuracy for the Brixia score and other scores (e.g., Toussie
Score and GE-LO Score). To improve the explainability of
the Grad-CAM algorithm, they proposed a method (inspired
by LIME [49]) using the concept of super-pixels [63].
In summary, they computed the difference between the
probability maps produced by the ith replica (in which a
single super-pixel is masked to zero) and the probability
map produced by the model. The explainability maps
generated help the understanding of the network activity in
the lung areas, improving the poor localization capability of
Grad-CAM.
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FIGURE 2. Overall flow diagram depicting the whole processing pipeline implemented, where it is possible to
individualize four high-level blocks: i) radiomic features processing, ii) clinical and laboratory features processing,
iii) setup of the machine learning predictive models, and, finally, iv) implementation of the post-hoc explanation.

Related studies indicate that only a limited num-
ber of works have tackled the issue of interpretability.

Furthermore, when attempts have been made in this regard,
the resulting saliency maps have often produced unsat-
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isfactory and inconsistent interpretations [34], [40]. This
aspect is highlighted in [56], which proposed an ad-hoc
method to overcome the critical issues of Grad-CAM. In our
proposed work, our primary objective is to emphasize the
importance of explainability. We aim to achieve this by
presenting amethodology that effectively addresses the needs
of developers, clinicians, and patients.

III. MATERIALS AND METHODS
As introduced in Section I, the article proposes ML models
for prognosis prediction of COVID-19 patients, focusing on
model explainability. Figure 2 shows the overall workflow.
The next subsections describe each block of the processing
pipeline in detail.

A. MULTI-CENTRIC DATASET DESCRIPTION
The dataset is composed of clinical, laboratory, and CXR
data coming from 1589 COVID-19 patients, classified as
‘SEVERE’, ‘MILD’ and ‘LIEVE’ prognosis. Patients were
classified according to the hospital support they received.
Specifically, the SEVERE class included patients who
required non-invasive ventilation support, intensive care unit
(ICU), or who died. The others were considered as MILD
[57]. The dataset was collected from 6 different hospitals.
This dataset was divided into 1103 patients used for the
training/validation of the predictive models and 486 patients
used for the testing phase. The division into 1103 and
486 cases was proposed by the organizing committee of
the Covid CXR Hackathon competition [19], who made the
dataset available. Unfortunately, these are the only samples
available for this multicenter study. In addition, the use of
only the samples in this dataset is justified by the need to fairly
compare our approach with other approaches in the literature
(i.e., Soda et al. [57]), which use the same dataset. Informed
consent was waived because the dataset analysed in this study
is publicly available to members of the scientific community
upon request at the Covid CXR Hackathon competition [19].
Table 1 shows the class distribution for each hospital.

1) CXR IMAGES DETAILS
The CXR images were provided in. PNG format (16-bit
depth) and no metadata related to acquisition details (e.g., X-
Ray imaging parameters, allocated bits, pixel spacing, etc.)
are available. From a mere qualitative assessment, the dataset
appeared highly heterogeneous in terms of both size and
overall quality. Table 2 shows the size distribution among the
various centres.

The images were acquired at 6 different centres (indicated
as A, B, C, D, E, and F), leading to CXR images with great
variability in terms of intrinsic image quality and acquisition
conditions. Concerning the quality, it seems that — in
addition to natively digital images — there are also images
obtained by scanning X-Ray plates, resulting in poor-quality
images. Moreover, some images exhibit an inverted pattern,
in contrast to the typical representation where bones are
depicted as hyperintense regions (indicative of high density)

and lung hypointense areas (indicative of low density). For
this reason, we inverted the images with an opposite pattern
to the conventional one (where bones are represented with
hyperintense regions). Instead, concerning the environment,
the dataset contains images of patients with both permanent
life-support devices (such as pacemakers) and temporary
ones (e.g., tubes for forced ventilation, thoracic electrodes,
and monitoring wires).

2) CLINICAL AND LABORATORY FEATURES SELECTION AND
DATA IMPUTATION
For each patient, clinical and laboratory data were associated
with the CXR image (the complete features list is provided
in A). The prognosis feature was used as a label for
supervised training. Then, only 23 features were used as
input. In particular:

• 3 features (i.e., Hospital and Position, Death) were
excluded a-priori;

• 5 features (i.e., Fibrinogen, PCT, dDimer, SaO2,
Obesity) were not considered because a missing data
percentage over 50%;

• 6 features (i.e., OxPercentage, CardiovascularDisease,
IschemicHeartDisease, AtrialFibrillation, HeartFail-
ure, Ictus) were excluded because not present on the test
set.

Univariate and multivariate data imputation techniques
were implemented to handle missing values of the remaining
23 clinical features. In the first case, mean and median values
were used. In the second case, a regressor was considered.
In particular, at each step, the feature column to impute is
designated as output and the other feature columns are treated
as inputs for a regressor. The regressor is then used to predict
the missing values of the feature considered.

B. LUNG ROIS DELINEATION ASSESMENT
A MatLab-coded custom tool was implemented to delineate
the lung ROIs for radiomic feature extraction. In particular,
the following two segmentation modalities were imple-
mented:

1) hand-free whole lung delineation: manual modality
to detect the entire left and right lungs. These
segmentations were performed by a radiologist with
more than 3 years of experience in X-Ray annotation,
in consensus with a consultant senior radiologist.

2) semi-automated elliptic ROI delineation: semi-
automatic modality employed to identify the maximum
elliptical region that is fully contained within the
lungs. The operator only needs to centre the bounding
box on the lung, and automatically the implemented
software locates the ellipse. This delineation modality
was implemented to focus the attention only on the
central area, excluding peripheral zones.

The GUI allows 1) interactive selection of the two selection
modes; 2) execution of segmentation; and 3) final saving.
Specifically, the image and its mask were saved in NIFTI
format.
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TABLE 1. Multi-centric dataset characteristics used for the predictive models training/validation and the testing phases.

TABLE 2. Variability in CXR image size across the different hospitals. Only the top 3 most frequent sizes (along with the number of images and
percentage) are reported for each centre.

TABLE 3. Number of patients with health-supporting on the CXR image.

The radiomic features quantify the distribution/texture
of the lung tissues. Considering that the image presents a
lot of external health-supporting devices (as summarized in
Table 3, the presence of external health-supporting devices
(e.g., pacemakers, monitoring wires, respirator pipes, etc.)
would alter the extracted feature values. For this reason, areas
containing external health-supporting devices were excluded
in both delineation modalities (as in the SEVERE case shown
in Figure 3).

C. RADIOMIC FEATURES EXTRACTION
A total of 1023 features were extracted by means of the
PyRadiomics [62], [72] toolkit. In particular, 93 original
features were extracted, considering:

• first-order intensity histogram statistics;
• Gray Level Co-occurrence Matrix features (GLCM)
[20], [21];

• Gray Level Run Length Matrix (GLRLM) [13];
• Gray Level Size Zone Matrix (GLSZM) [60];
• Gray Level Dependence Matrix (GLDM) [59];
• Neighboring Gray Tone Difference Matrix
(NGTDM) [3].

Then the same features were extracted considering Lapla-
cian of Gaussian (LoG) and Wavelets filtered images. For
LoG filtering three different values of σ were considered
(σ ∈ {1, 3, 5}), collecting 279 features (279 = 93 × 3);
for Wavelets transform, the Haar kernel [47] and two

decomposition levels (levels ∈ {1, 2}) were considered,
obtaining 651 features (651 = 93 × 7). Finally, 930 fea-
tures were extracted from the filtered images. Moreover,
to determine the optimal quantization level, the features were
extracted considering different binWidth values (binWidth ∈

{8, 16, 32, 64, 128, 256}).

D. RADIOMIC FEATURES CALIBRATION AND
PRE-PROCESSING
Features calibration and pre-processing were performed by
following the steps [42]:

1) quantization level analysis: the quantization [62] level
was established considering the highest number of
radiomic features according to the Intraclass Cor-
relation Coefficient (ICC); this analysis allowed to
determine the optimal width of bins, which maximized
the number of robust (in terms of ICC) features. In this
study, the two-way random-effects model, consistency,
single rater/measurement ICC, named ICC(3,1), was
considered [37], [55];

2) near-zero variance analysis: the objective of the
near-zero variance analysis was to eliminate fea-
tures with near-zero variance values. The features
exhibiting variance less than or equal to 0.01 were
discarded;

3) redundant features analysis: this step was involved
in removing highly correlated features, using the
Spearman correlation for pairwise feature comparison.
Considering that values greater than 0.80 are com-
monly used for Spearman correlation [28], [39], [41],
[70], a threshold of 0.85 was chosen.

4) statistical analysis: theMann-WhitneyU test was used
to test the difference between MILD and SEVERE
distribution computing the p-value for each feature
selected in the previous steps. The p-value threshold
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FIGURE 3. Two examples related to the implemented annotation modalities: in (a) and (d) original CXR images of MILD and SEVERE patients,
respectively; in (b) and (e) the hand-free whole lung delineations; in (c) and (f) the semi-automatic elliptic ROI delineations. To avoid altering the
radiomic features extracted from lungs, areas containing external health-supporting devices were excluded in the segmentation, such as in the SEVERE
case above (subfigures (d), (e), (f)).

was 0.05. Obtained p-values were adjusted using the
Bonferroni–Holm method [66].

E. FEATURES SELECTION AND PREDICTIVE MODEL SETUP
1) ELLIPTIC VS. HANDCRAFTED SEGMENTATION
EVALUATION
Feature selection was preceded by the evaluation of the most
predictive segmentation technique (i.e., hand-free whole lung
and automated elliptic ROI), using the Sequential Feature
Selector [51] algorithm. Sequential Feature Selector was set
in forward (SFS) and floatingmode (SFFS)mode. A stratified
10-fold cross-validation (CV) for performance evaluation
was considered, using SVM and RF as algorithms. Data were
normalized for all experiments involving SVM.

2) RADIOMIC AND CLINICAL/LABORATORY FEATURE
SELECTION
A preliminary feature selection was performed to evaluate
the performance of each unimodal model separately (i.e.,
clinical/laboratory, radiomic). SFFS was used to evaluate

how performance varies as the feature number increases,
and, consequently, to choose the optimal number of features
to maximize accuracy. For the clinical/laboratory features,
SFFS was set to show the accuracy trend considering all the
features (23). Instead, for the radiomic features SFFS was
set to select the best 30 features. All experiments involving
feature selection with SFFS were performed through a
stratified 10-fold CV. Subsequently, three strategies were
applied:

• Selection Strategy 1: SFFS was applied considering the
clinical/laboratory and radiomic features selected in the
preliminary selection step.

• Selection Strategy 2: SFFS was applied to all the
clinical/laboratory and all radiomics features.

• Selection Strategy 3: SFFS was applied to the optimal
number of radiomic features selected in the prelim-
inary selection step and all the clinical/laboratory
features. This strategy was implemented to balance
the ratio between clinical/laboratory and radiomic
features.
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3) MODEL TRAINING AND TEST
Before the training/validation phase, imputation for clinical
and laboratory data was performed, as well as calibration,
and pre-processing of radiomic features. Successively, for
each feature selection strategy, a stratified 10-fold CV was
repeated 20 times for hyperparameters tuning. In terms of
accuracy, the best model obtained in the CV procedure was
selected and used to evaluate the performance on the test set.

F. MULTI-LEVEL EXPLAINABILITY
The development and integration of a Clinical Decision
Support System (CDSS) into real clinical practice require that
the system is explainable and the decision understandable
by users. Therefore, the proposed multi-level explanation
takes into account the perspectives of the developer and the
stakeholders involved in the care process (e.g., physician and
patient)

1) DEVELOPER PERSPECTIVE
The developer aims to train models able to generalize on
unseen data. Although stingy validation protocols may allow
detecting the overfitting problem on the training distribu-
tion, the model may perform poorly when a distribution
encountered during deployment is slightly different [65]. This
occurrence, commonly known as distribution drift, can be
addressed through the use of explainable AI algorithms.

To detect and avoid the distributional drift issue, the
Mean Decrease Accuracy (MDA) method available in
ELI5 framework [12] was used. Features’ importance was
calculated through the Leave One Center Out (LOCO)
procedure, where each centre represents one of the six
hospitals (i.e., A, B, C, D, E, and F). The LOCO evaluation
consists of splitting the dataset samples for each centre and
assigning, to each iteration, five of the six centres to the
training and the remaining one to the test. The following
methodology was used to drop center-dependent features
and select only the descriptive features of the COVID-19
prognosis. In particular:

• the MDA method was used to calculate the features’
importance of each centre. For example, to compute fea-
ture importance for hospital A, all hospitals were used
for the training, and A for test and MDA computation.
This procedure is repeated for each hospital.

• according with MDA method, a positive weight is
representative of significant features, vice versa a
negative weight is representative of unstable features.

• to define a feature as stable, 3 different criteria were
established, selecting features that in at least 3, 4, or
5 centres (out of 6) obtained positive weights; features
with less than 3 positive weights (across all hospitals)
were considered dependent on the acquisition centre and
then discarded.

Applying this procedure, three different skimmed subsets
of features were obtained (features having at least 3, 4,
or 5 positive weights on the six centres). To evaluate the
approach improvement, model performance was computed

TABLE 4. Quantization level analysis results.

without this debugging step and considering only the features
in the 3 subsets. The rationale is that removing features that
lack stability across multiple centres (i.e., features that are
not informative of the phenomenon but rather dependent
on the originating hospital) can enhance the generalization
capabilities of the trained models.

2) PHYSICIAN PERSPECTIVE
Physicians need to ensure that the learned patterns by the
model are supported by clinical evidence. Through the use of
inherently interpretable features, such as clinical, laboratory,
and radiomic, results can be compared with clinical practice,
and inconsistent behaviour with medical literature can
be detected. The SHapley Additive exPlanations (SHAP)
analysis [33] was used to provide a global explanation.
In particular, was employed to identify the features that drive
the system’s output towards either a SEVERE or MILD
prediction. This step was addressed with a medical team,
which was able to compare and verify the results obtained
with the medical literature.

3) PATIENT PERSPECTIVE
Finally, the General Data Protection Regulation (GDPR) [43]
imposes an explanation on the users who receive the systems’
decisions: the patients. For this purpose, a local explanation
is performed for each specific instance. The SHAP analysis
was also used to obtain a local explanation and to evaluate
the features pushing the model toward a SEVERE or MILD
decision.

IV. EXPERIMENTAL RESULTS
A. RADIOMIC FEATURES PRE-PROCESSING AND LUNG
DELINEATION SELECTION
Starting from the initial set of 1023 radiomic features,
calibration and pre-processing steps were performed to select
robust, informative, and non-redundant features. The ICC
analysis was used to establish the best quantization level
considering binWidth ∈ {8, 16, 32, 64, 128, 256}. Table 4
shows the number of robust features for each bin width. A
binWidth = 32 was chosen (considering ICC ≥ 0.85) and
used in all subsequent steps of the processing pipeline.

Then, the number of radiomic features was progressively
reduced within each pre-processing step, and a final set of
40 features was obtained (see Table 5).

Finally, Table 6 reports the accuracy values (computed
through SFFS, during the 10-fold CV procedure) obtained
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TABLE 5. Calibration and pre-processing of radiomic features.

TABLE 6. Evaluation and choice of the best lung delineation approach.
With both classifiers (i.e., SVM and RF), the automated elliptic ROI
modality shows slightly better behaviour than the hand-free whole lung
modality. Radiomic features considered here belong to both types
(original and filtered).

in the evaluation of the best lung delineation approach
(i.e., hand-free whole lung and automated elliptic ROI
delineations). Both SVM and RF showed a higher accuracy
using the features extracted from elliptic ROIs. Auto-
matic elliptical ROI segmentation reaches better results
than hand-free modality. This result was justified by the
clinicians considering that elliptic modality focuses on
the central area of the lung, the most representative with
respect to the peripheral ones. For this reason, features
extracted from the elliptic ROIs were used in the following
experiments.

B. IMPUTATION OF MISSING VALUES IN CLINICAL DATA
SFFS was used also to select the best imputation method.
Table 7 shows the results of SVM and RF using the
three clinical data imputation approaches. No significant
differences were calculated between the used approaches.
However, a smaller standard deviation was obtained with the
mean. Therefore, according to [57], the mean was used for
data imputation.

TABLE 7. Findings obtained with the different imputation approaches
used to manage missing data in clinical features.

C. FEATURE SELECTION AND MODEL TRAINING
As introduced previously, SFFS [51] was used to select the
best features subset maximizing accuracy, within a stratified
10-fold CV. More details are provided in B, where Figure 7

shows the preliminary feature selection results to evaluate the
unimodalmodels. Considering the features numbermaximize
accuracy, Table 8 shows the performance obtained by SVM
and RF, considering only clinical/laboratory features, and
only radiomic.

After the preliminary selection, three feature selection
strategies combining both clinical/laboratory and radiomic
features were implemented to evaluate themultimodalmodel:

• Selection Strategy 1: in this case, 22 radiomic and
11 clinical/laboratory were considered for SVM and
16 radiomic and 15 clinical/laboratory for RF.

• Selection Strategy 2: SFFS was applied on all the
clinical/laboratory (23) and all radiomic (40) features.

• Selection Strategy 3: In this case, 22 radiomic and
23 clinical/laboratory for SVM, 16 radiomic and 23 clin-
ical/laboratory for RF.

Table 9 summarizes the training/validation performance
computed for the three selection strategies, considering the
20-repeated stratified 10-fold CV. As expected, when clinical
laboratory and radiomic features are used simultaneously,
model performance improves compared with unimodal
models [4], [64].

D. PREDICTIVE MODELS TEST
Considering the higher performance, the multimodal models
were used for the testing phase. The AUC is the most widely
used index of global diagnostic accuracy since higher values
correspond to a better selective ability of the biomarkers [58].
Therefore, AUC was used to select the best predictive model.
As a matter of fact, AUC values obtained in the test had
a minimal decrease compared with the training/validation
phase, demonstrating promising generalization capability.
Table 10 summarizes the results obtained in the testing phase
for SVM and RF. RF achieved better performance compared
to SVM. The Selection Strategy 1 was the best strategy,
obtaining an AUROC of 0.800. It can be concluded that the
Random Forest + Selection Strategy 1 guarantees the highest
performance.

E. MODEL INSPECTION AND FINAL TEST PERFORMANCE
To further improve the generalization capabilities of the
model, additional feature skimming was performed. In par-
ticular, MDA [12] analysis, calculated in LOCO modality,
was used to remove the features subject to distributional
drift. Starting from the most performing model (Random
Forest+ Selection Strategy 1) and using the weights provided
by MDA across the 6 centres (i.e., hospitals), we reduced
the set of input features. Table 11 shows the features
with positive weight in more than 3, 4, and 5 centers,
simultaneously. Three feature subsets composed of 17,
11, and 6 features were obtained and used to retrain the
models and recalculate the test performance. Table 12 shows
the obtained improvement in discarding features suscepti-
ble to the distributional drift phenomenon. In particular,
accuracy=0.733 and AUROC=0.819 were obtained using
the features with positive weight in 4 centres simultaneously,
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TABLE 8. Preliminary feature selection result obtained by SVM and RF. This selection is used to determine the optimal signature, considering radiomic
and clinical/laboratory features separately. For each metric, the mean value ± standard deviation and the confidence interval are reported.

TABLE 9. Performance obtained in the training/validation phase by the SVM and RF classifiers, with the 10-fold stratified CV procedure (20 repetitions
were performed). For each metric, the mean value ± standard deviation and the confidence interval are reported.

TABLE 10. Performance obtained in the testing phase by the SVM and RF classifiers.

vs. accuracy=0.705 and AUROC=0.800 without the distri-
butional drift management.

V. DISCUSSION AND ANALYSIS
In this work, a ML model was proposed to provide an
explainable output for COVID-19 prognosis prediction. The
model aims to support physicians in discriminating among
different disease evolution. The clinical scenario needs
an explanation of the predictions to justify the decision-
making process. For this reason, we proposed a multi-level
explanation to address the needs of the stakeholders involved
in the model development and in the clinical decision process
(i.e., developer, physician, patient). In fact, intrinsically
interpretable clinical, laboratory, and radiomic features were
used to allow model introspection and a global and local
explanation.

A. CLINICAL VALIDATION
The SHAP Tree Explainer [33] allowed interpretation
and clinical validation of the model findings. Figure 4

shows the selected features with the highest impact on the
trained model. Clinical and laboratory features show an
important correspondence with findings applied in clinical
practice:

• patients with high values of Lactate DeHydrogenase
Concentration (LDH) in the blood are generally predis-
posed to SEVERE diseases, while low values seem to
have greater resistance and are limited toMILD diseases
[22];

• low values of Partial Pressure of oxygen (PaO2) in
arterial blood are indicative of SEVERE disease, while
high values indicate a MILD level disease [61];

• the clinical evidence confirmed that the high values of
C-Reactive Protein (CRP) are an indicator of SEVERE
disease, while parameter low values indicate a MILD
level disease [2];

• male subjects [38], and, naturally, older subjects are
more exposed to severe disease (Sex, Age).

Laboratory parameters, such as LDH and CRP, are
associated with the most severe forms of COVID-19 disease.
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TABLE 11. Starting from the 21 features selected via the Selection Strategy 1 (see Subsection III-E2) with the RF classifier, several selection criteria were
applied (i.e., th=3+, 4+, and 5+, respectively) to remove distributional drift-affected features.

TABLE 12. Performance obtained in the testing phase by the RF classifier
after MDA features skimming.

This is not surprising, given that they are an expression
of the inflammatory cascade. Previous studies have already
confirmed that high levels of serum LDH are among the best
predictors of clinical worsening. Similarly, high blood values
of CRP predict theworst clinical evolution of patients who are
diagnosed with COVID-19 diseases. In a recent study [45],
both LDH andCRPwere found to increase the accuracy of the
COVID-19 diagnosis in suspected patients with respiratory
symptoms. In another study [11], both laboratory parameters
were demonstrated to be able to predict — in combination
with radiological features — the need for invasive ventilation
in patients with COVID-19 pneumonia. In line with this,
it is logical to predict that low levels of PaO2 are associated
with severe disease because they describe a condition of
lung failure. Since the first wave of the pandemic, it became
evident that hypoxemia at the time of diagnosis identified the
most severe cases of COVID-19 disease, who experienced
the highest risk of severe respiratory distress and death.
This lung functional parameter is included in the most used
predictive scores for the identification of subjects with acute
respiratory failure by COVID-19 at risk of mortality [23].
The current findings confirm the importance of adding in the
discriminating approach the lung functional and laboratory

parameters that are an expression of hyper-inflammatory
processes and lung involvement.

As concerning the radiomic features, the wavelet-derived
and LoG-derived features showed high discriminatory prop-
erties. Figure 5 shows an example of wavelet and LoG
images.

The most important features belong to the GLSZM
category, quantifying grey level zones in an image (where a
grey level zone is defined as the number of connected pixels
sharing the same grey level intensity). In particular:

• for HighGrayLevelZoneEmphasis, a higher value indi-
cates a greater proportion of higher grey-level values
and size zones in the image. In our case, high values
mean that the lung is more uniform (with large uniform
regions) and no lesions are present;

• for ZoneEntropy, SEVERE patients show amore hetero-
geneous texture. Hence, the behaviour of ZoneEntropy
is analogous to HighGrayLevelZoneEmphasis in the
classification process.

The behaviour of the two radiomic features is also proved
by the connected components analysis of the processed
images. In fact, the mean area of the connected components
is significantly larger in MILD patients than in SEVERE
patients. This means that MILD patients show a more
regular pattern (with larger and more uniform regions),
while SEVERE patients show a more inhomogeneous pattern
(with smaller irregular regions). This analysis introduces and
assesses a method for lung impairment degree estimation.
Both zoneEntropy and HighGrayLevelZoneEmphasis low
values lead to SEVERE lung impairment predictions, while
high values lead to MILD lung impairment predictions. The
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FIGURE 4. The beeswarm plot proposed by SHAP was used to evaluate the importance of each feature of the trained model. For each test sample,
Shapley values were calculated and aggregated in the graph. In particular, the importance of the features is ordered in a decreasing way, so LDH is
the most significant feature for the classification, followed by ZoneEntropy (Wavelet HL, GLSZM), etc. The colour of the dots is representative of
low (blue) or high (red) feature values. The presence of dots on the left or right side of the vertical line (Shapley value equal to 0.0) means that this
specific feature leads the model to go towards a MILD or SEVERE prediction, respectively.

FIGURE 5. In (a) and (d) the lung area of MILD and SEVERE patients, respectively; in (b) and (e) images after filtering with wavelet
Haar HL; in (c) and (f) images after filtering with LoG with σ = 1.0 mm.

result suggests higher variability between connected regions
due to a partial lung region impairment.

Using the SHapley values, it was also possible to obtain
a local explanation to assess the predictions for each
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FIGURE 6. The graphs show a local explanation of two clinical cases predicted as MILD (a) and SEVERE (b). Features leading the model’s prediction
toward a MILD outcome are represented in blue, while features leading the model to predict SEVERE are represented in red.

specific patient. Figure 6 shows an example of two patients
predicted as MILD and SEVERE, respectively. For the
first case (Figure 6a), the normal LDH (217), CRP (0.63),
PaO2 (89.5), and absence of respiratory distress, push the
prediction towards a MILD prognosis. For the second case
(Figure 6b), a high LDH value (680), and medium/low value
of ZoneEntropy lead to the prediction of SEVERE prognosis.
These examples demonstrate how explainability makes a
predictive model also a CDSS for the physician, allowing an
exhaustive explanation.

B. PERFORMANCE DISCUSSION AND LITERATURE
COMPARISON
In the testing phase, RF trained using the skimmed signature
with 4+ positive weights in the LOCO modality achieved an
accuracy=0.733 and AUC=0.819. It demonstrates promising
generalization capabilities and minimal performance degra-
dation with respect to training/validation performance.

Our work can be compared fairly with [5], [17], and [57],
the only literature works using a subset of our same dataset.
In particular, considering only CXR images, in [57] the
accuracy obtained (on a subset of 820 cases) with radiomics
was 65.8±1.50 against 74.2±1.0 with deep features; in [17]
the best model yielded an accuracy of 73.36 ± 1.95 using
deep features. These results improved when clinical features
were also considered: [57] obtained an accuracy of 76.9 ±

5.4, while [17] got 77.90 ± 1.27. The accuracy values
reported by [57] are those obtained in the training/validation
phase. Also in [5] deep architectures were proposed, with
the best one giving sensitivity=0.79, specificity=0.82, and
AUC=0.84. In summary, our results are promising and
in line with the literature on the same dataset or on a
subset [5], [17], [57].
Nevertheless, it is important to highlight the explainability

and accuracy trade-off of our solution. In fact, in [57] and
[17] deep learning approaches slightly improve performances
compared with our model. However, deep features extracted
by CNN do not guarantee a high level of explainability.
From a clinical point of view is difficult to correlate the

deep features learned with morpho-functional characteristics
of a disease found by physicians. Through the use of
intrinsically interpretable clinical and radiomic features,
the proposed multi-level explanation improves the model’s
clinical validation.

In addition, as shown in Table 13, few works focus on
explainable solutions. In [5], [17], and [57], saliency maps
are used to realize explanation. We believe that the decrease
in performance (compared with deep approaches proposed
in [5], [17], [57]) obtained in our study is reasonable and
justifies the choice of improving the explainability for a
clinically compliant solution.

C. SHALLOW AND DEEP STRATEGIES
The main purpose of the study is to provide a globally
and locally explainable model, able to clinically validate
the model findings with the physician’s support. This is
achievable through the use of intrinsically intelligible input
features and XAI methods for global and local explanation,
such as the SHAP method. For this reason, we preferred to
use radiomic features, rather than deep features, because it is
well-known the meaning each feature expresses. In addition,
radiomic features, combined with clinical and laboratory fea-
tures (e.g., tabular data) allow us to draw clinical conclusions
and interpret model findings [36]. In this scenario, shallow
learning techniques are more appealing than deep learning
methods. First, because they require fewer computational
resources and data samples.Moreover, the explanation proves
to be reliable and complete (both from a global and local point
of view). Shallow learning algorithms - like RF and SVM
- have been the standard for processing tabular data [14],
[25], [48]. Indeed, in [57] it was demonstrated that shallow
learning methods like SVM outperform their deep learning
counterparts when tabular data are used (Tables 4 and 5).

The main key points that lead us to use shallow learning
techniques instead of deep ones, are here summarized:

• features interpretability and predictive model explain-
ability: typically in deep learning approaches, images
are the input of the deep neural network architectures,
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TABLE 13. Literature approaches and comparison. (*) In the Dataset/Modality/Centers column, the values between round parenthesis represent the
number of images used for training, validation, and testing phases, respectively.

and it is the architecture itself that extracts features via
convolution (i.e., learned features). Learned features are
not directly intelligible and the meaning is unknown.
Instead, by providing the radiomic features directly,
we would know a priori the meanings of the input,
improving the explainability aspect and allowing clinical
introspection;

• deep learning models explainability techniques are not
robust and unreliable: there are several methods to
explain the features extracted via deep neural net-
works, focusing mainly on saliency maps computation.
These methods aim to highlight the areas that most
influence the model decision [34], [35]. Unfortunately,
some experimental findings demonstrated unsatisfac-
tory results in the clinical domain. For example, poorly
localized, and spatially blurred visualization was found
in some cases [40], [56]. In addition, it has been shown
that the saliency map does not change even when
adversarial attacks lead to incorrect model predictions
[16]. Moreover, it has been shown that different saliency
map computation techniques can produce conflicting

results, as reported in [46] and [69]. Finally, these
methods enable just a local explanation (i.e., for each
specific patient), not allowing a global validation of the
system decisions. For this reason, saliency maps have
still to demonstrate to be an effective tool for validating
clinical findings;

• comparable performance: results obtained from our
model are comparable with deep approaches available
in [5] and [57]. To evaluate this aspect, additional tests
were performed using the architectures proposed in
[5] and [57]. In particular, ResNet-11, ResNet-18, and
ResNet-50 were trained - by exploiting Adam optimizer
- using as input images resized to 224 × 224. The
use of these deep architectures didn’t allow relevant
improvements over the proposed radiomic approach.
The best accuracy obtained with ResNet-50 resulted
lower than our SVM-based model. Moreover, with deep
learning approaches, the clinical interpretation of the
results - performed by means of saliency maps - would
be reduced to visual/qualitative evaluation, which is a
subjective and operator-dependent tool.

121506 VOLUME 11, 2023



F. Prinzi et al.: Explainable ML Models for COVID-19 Prognosis Prediction

FIGURE 7. Accuracy trend obtained in the preliminary selection by SVM (in (a) and (b)) and RF (in (c) and (d)) classifiers, during the features
selection, performed using SFFS algorithm: in (a) and (c) results on radiomic features; in (b) and (d) results on clinical features.

VI. CONCLUSION AND FUTURE DIRECTIONS
This work defined predictive models using clinical and
radiomic features for COVID-19 prognosis prediction.
Different ML classifiers and feature selection strategies
were implemented, to optimally combine clinical, laboratory
and radiomic features. In a clinical scenario, the findings
have to be correct, effective, and also interpretable and
clinically justifiable. Most of the literature works merely
provide a set of features, focusing poorly on explaining the
results. In this work, a multi-level clinical explanation was
proposed through Explainable AI algorithms, considering
the point of view of the stakeholders involved in the care
process (i.e., developers, physicians, and patients). To make
predictive models intrinsically explainable, they must be
trained with explainable inputs. For this reason, the use of
deep features (i.e., extracted through neural networks) was
avoided. A global explanationwas used for distributional drift
detection and to clinically justify the behaviour of features
that most influence classification. On the other hand, a local
explanation was essential to make implementable the concept
of a CDSS, which transparently gives the prediction and the
explanation to the physician and patient.

Our work represents an attempt to implement
an X-CDSS. The development of explainable radiomics-

powered predictive models could accelerate their incorpora-
tion into personalized medicine [15], [27]. For this reason,
it is essential in the future to realize large-scale studies
using explainable ML models to define the associations
between data and clinical outcomes. Providing reliable
and explainable diagnostic and prognostic biomarkers for
precision medicine is the ultimate goal of this research field.

APPENDIX A
PROVIDED CLINICAL AND LABORATORY DATA
This appendix provides the complete list of clinical and
laboratory features associated with CXR images.

In particular, clinical data are: Hospital, Age, Sex, Pos-
itivity at Admission, Temperature, Days of Fever, Cough,
Difficulty in Breathing, Cardiovascular Disease, Ischemic
Heart Disease, Atrial Fibrillation, Heart Failure, Ictus, High
Blood Pressure, Diabetes, Dementia, Chronic Obstructive
Bronchopneumopathy (BPCO), Cancer, Chronic Kidney
Disease, Respiratory Failure, Obesity, Position, Prognosis,
Death.

Instead, laboratory data are: White Blood Cell (WBC),
Red Blood Cell (RBC), C-Reactive Protein (CRP), Fibrino-
gen, Glucose, Procalcitonin (PCT), Lactate Dehydrogenase
(LDH), International Normalized Ratio (INR), D-Dimer,
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Oxigen Percentage, Partial Pressure of Oxygen (PaO2),
Arterial Oxygen Saturation (SaO2), Partial Pressure of
Carbon Dioxide (PaCO2), pH.

APPENDIX B
PRELIMINARY FEATURE SELECTION: ACCURACY TRENDS
SFFS was used to select the best features subset. More
details are provided in the following Figure 7, showing the
accuracy trends obtained in the preliminary features selection
results to evaluate the unimodal models (considering only
clinical/laboratory features, and only radiomic features). The
number of features maximizing the accuracy was considered.
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