456 research outputs found

    Seeing pain and pleasure on self and others: behavioural and psychophysiological reactivity in immersive virtual reality

    Get PDF
    Studies have explored behavioral and neural responses to the observation of pain in others. However, much less is known about how taking a physical perspective influences reactivity to the observation of others' pain and pleasure. To explore this issue we devised a novel paradigm in which 24 healthy participants immersed in a virtual reality scenario observed a virtual: needle penetrating (pain), caress (pleasure), or ball touching (neutral) the hand of an avatar seen from a first (1PP)- or a third (3PP)-person perspective. Subjective ratings and physiological responses [skin conductance responses (SCR) and heart rate (HR)] were collected in each trial. All participants reported strong feelings of ownership of the virtual hand only in 1PP. Subjective measures also showed that pain and pleasure were experienced as more salient than neutral. SCR analysis demonstrated higher reactivity in 1PP than in 3PP. Importantly, vicarious pain induced stronger responses with respect to the other conditions in both perspectives. HR analysis revealed equally lower activity during pain and pleasure with respect to neutral. SCR may reflect egocentric perspective, and HR may merely index general arousal. The results suggest that behavioral and physiological indexes of reactivity to seeing others' pain and pleasure were qualitatively similar in 1PP and 3PP. Our paradigm indicates that virtual reality can be used to study vicarious sensation of pain and pleasure without actually delivering any stimulus to participants' real body and to explore behavioral and physiological reactivity when they observe pain and pleasure from ego- and allocentric perspectives

    How the stomach and the brain work together at rest

    Get PDF
    Low-frequency electrical waves in the stomach seem to be synchronised with the activity of a newly discovered resting-state network in the human brain

    Influence of warmth and competence on the promotion of safe in-group selection. Stereotype content model and social categorization of faces

    Get PDF
    Categorizing an individual as a friend or foe plays a pivotal role in navigating the social world. According to the Stereotype Content Model, social perception relies on two fundamental dimensions, Warmth and Competence, which allow us to process the intentions of others and their ability to enact those intentions, respectively. Social cognition research indicates that, in categorization tasks, people tend to classify other individuals as more likely to belong to the out-group than the in-group (In-group Overexclusion Effect, IOE) when lacking diagnostic information, probably with the aim of protecting in-group integrity. Here, we explored the role of Warmth and Competence in group-membership decisions by testing 62 participants in a social-categorization task consisting of 150 neutral faces. We assessed whether (i) Warmth and Competence ratings could predict the in-group/out-group categorization, and (ii) the reliance on these two dimensions differed in low-IOE vs. high-IOE participants. Data showed that high ratings of Warmth and Competence were necessary to categorize a face as in-group. Moreover, while low-IOE participants relied on Warmth, high-IOE participants relied on Competence. This finding suggests that the proneness to include/exclude unknown identities in/from one's own in-group is related to individual differences in the reliance on SCM social dimensions. Furthermore, the primacy of Warmth effect seems not to represent a universal phenomenon adopted in the context of social evaluatio

    Transitory Inhibition of the left anterior intraparietal sulcus impairs joint actions: a continuous Theta-Burst stimulation study

    Get PDF
    Although temporal coordination is a hallmark of motor interactions, joint action (JA) partners do not simply synchronize; they rather dynamically adapt to each other to achieve a joint goal. We created a novel paradigm to tease apart the processes underlying synchronization and JA and tested the causal contribution of the left anterior intraparietal sulcus (aIPS) in these behaviors. Participants had to synchronize their congruent or incongruent movements with a virtual partner in two conditions: (i) being instructed on what specific action to perform, independently from what action the partner performed (synchronization), and (ii) being instructed to adapt online to the partner's action (JA). Offline noninvasive inhibitory brain stimulation (continuous theta-burst stimulation) over the left aIPS selectively modulated interpersonal synchrony in JA by boosting synchrony during congruent interactions and impairing it during incongruent ones, while leaving performance in the synchronization condition unaffected. These results suggest that the left aIPS plays a causal role in supporting online adaptation to a partner's action goal, whereas it is not necessarily engaged in social situations where the goal of the partner is irrelevant. This indicates that, during JAs, the integration of one's own and the partner's action goal is supported by aIPS

    Causative role of left aIPS in coding shared goals during human-avatar complementary joint actions

    Get PDF
    Successful motor interactions require agents to anticipate what a partner is doing in order to predictively adjust their own movements. Although the neural underpinnings of the ability to predict others' action goals have been well explored during passive action observation, no study has yet clarified any critical neural substrate supporting interpersonal coordination during active, non-imitative (complementary) interactions. Here, we combine non-invasive inhibitory brain stimulation (continuous Theta Burst Stimulation) with a novel human-avatar interaction task to investigate a causal role for higher-order motor cortical regions in supporting the ability to predict and adapt to others' actions. We demonstrate that inhibition of left anterior intraparietal sulcus (aIPS), but not ventral premotor cortex, selectively impaired individuals' performance during complementary interactions. Thus, in addition to coding observed and executed action goals, aIPS is crucial in coding 'shared goals', that is, integrating predictions about one's and others' complementary actions

    Left threatened by Right: political intergroup bias in the contemporary Italian context.

    Get PDF
    Using different evaluation targets (i.e., politicians’ pictures, ideological words, items referring to features attributed to political ingroup/outgroup) we characterized the intergroup bias among political groups in the Italian context (Study 1-2-3) and tested a model that may account for the bias itself (Study 3). For all evaluation targets, left-wing participants -compared to right wing participants - showed a greater intergroup bias, expressing more negative emotions towards the outgroup. The process was influenced by a greater perceived threat of the outgroup. Conversely, right-wing participants expressed the bias only when presented with ideological words. Our results provide a detailed description of how intergroup bias in Italy is differently expressed by the two ideological groups depending on the targets used to represent the political counterpart. Moreover, the results show that the stronger bias expressed by left-wing participants is driven by perceived threat of the outgroup

    Inhibition of left anterior intraparietal sulcus shows that mutual adjustment marks dyadic joint-actions in humans

    Get PDF
    Creating real-life dynamic contexts to study interactive behaviors is a fundamental challenge for the social neuroscience of interpersonal relations. Real synchronic interpersonal motor interactions involve online, inter-individual mutual adaptation (the ability to adapt one's movements to those of another in order to achieve a shared goal). In order to study the contribution of the left anterior Intra Parietal Sulcus (aIPS) (i.e. a region supporting motor functions) to mutual adaptation, here, we combined a behavioral grasping task where pairs of participants synchronized their actions when performing mutually adaptive imitative and complementary movements, with the inhibition of activity of aIPS via non-invasive brain stimulation. This approach allowed us to investigate whether aIPS supports online complementary and imitative interactions. Behavioral results showed that inhibition of aIPS selectively impairs pair performance during complementary compared to imitative interactions. Notably, this effect depended on pairs' mutual adaptation skills and was higher for pairs composed of participants who were less capable of adapting to each other. Thus, we provide the first causative evidence for a role of the left aIPS in supporting mutually adaptive interactions and show that the inhibition of the neural resources of one individual of a pair is compensated at the dyadic level

    Autistic traits affect interpersonal motor coordination by modulating strategic use of role-based behavior

    Get PDF
    Background: Despite the fact that deficits in social communication and interaction are at the core of Autism Spectrum Conditions (ASC), no study has yet tested individuals on a continuum from neurotypical development to autism in an on-line, cooperative, joint action task. In our study, we aimed to assess whether the degree of autistic traits affects participants' ability to modulate their motor behavior while interacting in a Joint Grasping task and according to their given role. Methods: Sixteen pairs of adult participants played a cooperative social interactive game in which they had to synchronize their reach-to-grasp movements. Pairs were comprised of one ASC and one neurotypical with no cognitive disability. In alternate experimental blocks, one participant knew what action to perform (instructed role) while the other had to infer it from his/her partner’s action (adaptive role). When in the adaptive condition, participants were told to respond with an action that was either opposite or similar to their partner. Participants also played a non-social control game in which they had to synchronize with a non-biological stimulus. Results: In the social interactive task, higher degree of autistic trait s predicted less ability to mod ulate joint action according to one’s interactive role. In the non-social task, autistic traits did not predict differences in movement preparation and planning, thus ruling out the possibility that social interact ive task results were due to basic motor or executive function difficulties. Furthermore, when participants played the non-social game, the higher their autistic traits, the more they were interfered by the non-biological stimulus. Conclusions: Our study shows for the first time that high autistic traits predict a stereotypical interaction style when individuals are required to modulate their movements in order to coordinate with their partner according to their role in a joint action task. Specifically, the infrequent emergence of role-based motor behavior modulation during on-line motor cooperation in participants with high autistic traits sheds light on the numerous difficulties ASC have in nonverbal social interaction

    Malleability of the self: electrophysiological correlates of the enfacement illusion

    Get PDF
    Self-face representation is fundamentally important for self-identity and self-consciousness. Given its role in preserving identity over time, self-face processing is considered as a robust and stable process. Yet, recent studies indicate that simple psychophysics manipulations may change how we process our own face. Specifically, experiencing tactile facial stimulation while seeing similar synchronous stimuli delivered to the face of another individual seen as in a mirror, induces 'enfacement' illusion, i.e. the subjective experience of ownership of the other’s face and a bias in attributing to the self, facial features of the other person. Here we recorded visual Event-Related Potentials elicited by the presentation of self, other and morphed faces during a self-other discrimination task performed immediately after participants received synchronous and control asynchronous Interpersonal Multisensory Stimulation (IMS). We found that self-face presentation after synchronous as compared to asynchronous stimulation significantly reduced the late positive potential (LPP; 450-750 ms), a reliable electrophysiological marker of self-identification processes. Additionally, enfacement cancelled out the differences in LPP amplitudes produced by self- and other-face during the control condition. These findings represent the first direct neurophysiological evidence that enfacement may affect self-face processing and pave the way to novel paradigms for exploring defective self-representation and self-other interactions

    Midfrontal theta transcranial alternating current stimulation modulates behavioural adjustment after error execution

    Get PDF
    Cognitive control during conflict monitoring, error processing, and post-error adjustment appear to be associated with the occurrence of midfrontal theta (MFϴ). While this association is supported by correlational EEG studies, much less is known about the possible causal link between MFϴ and error and conflict processing. In the present study, we aimed to explore the role of band-specific effects in modulating the error system during a conflict resolution. In turn, we delivered transcranial alternating current stimulation (tACS) at different frequency bands (delta δ, theta θ, alpha α, beta β, gamma γ) and sham stimulation over the medial frontal cortex (MFC) in 36 healthy participants performing a modified version of the Flanker task. Task performance and reports about the sensations (e.g. visual flickering, cutaneous burning) induced by the different frequency bands, were also recorded. We found that online θ-tACS increased the response speed to congruent stimuli after error execution with respect to sham stimulation. Importantly, the accuracy following the errors did not decrease because of speed-accuracy trade off. Moreover, tACS evoked visual and somatosensory sensations were significantly stronger at α-tACS and β-tACS compared to other frequencies. Our findings suggest that theta activity plays a causative role in modulating behavioural adjustments during perceptual choices in a stimulus-response conflict task. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Lt
    • …
    corecore