18 research outputs found

    Ion channels, long QT syndrome and arrhythmogenesis in ageing.

    Get PDF
    Ageing is associated with increased prevalences of both atrial and ventricular arrhythmias, reflecting disruption of the normal sequence of ion channel activation and inactivation generating the propagated cardiac action potential. Experimental models with specific ion channel genetic modifications have helped clarify the interacting functional roles of ion channels and how their dysregulation contributes to arrhythmogenic processes at the cellular and systems level. They have also investigated interactions between these ion channel abnormalities and age-related processes in producing arrhythmic tendency. Previous reviews have explored the relationships between age and loss-of-function Nav 1.5 mutations in producing arrhythmogenicity. The present review now explores complementary relationships arising from gain-of-function Nav 1.5 mutations associated with long QT3 (LQTS3). LQTS3 patients show increased risks of life-threatening ventricular arrhythmias particularly after 40 years of age consistent with such interactions between the ion channel abnormailities and ageing. In turn clinical evidence suggests that ageing is accompanied by structural, particularly fibrotic, as well as electrophysiological change. These abnormalities may result from biochemical changes producing low-grade inflammation resulting from increased production of reactive oxygen species and superoxide. Experimental studies offer further insights into the underlying mechanisms underlying these phenotypes. Thus, studies in genetically modified murine models for LQTS implicated action potential recovery processes in arrhythmogenesis resulting from functional ion channel abnormalities. In addition, ageing WT murine models demonstrated both ion channel alterations and fibrotic changes with ageing. Murine models then suggested evidence for interactions between ageing and ion channel mutations and provided insights into potential arrhythmic mechanisms inviting future exploration.KJ is funded by the Fundamental Research Grant Scheme (FRGS/2/2014/SKK01/PERDANA/02/1), Ministry of Education, Malaysia and the Research Support Fund, Faculty of Health and Medical Science, University of Surrey. KC was funded by the Physiological Society, United Kingdom. HV is funded by the Wellcome Trust Research Training Fellowship (105727/Z/14/Z) and Sudden Arrhythmic Death Syndrome (SADS), UK. SA is funded by a Medical Research Council Research Fellowship (MR/M001288/1). AG is funded by the McVeigh Benefaction and Sudden Arrhythmic Death Syndrome (SADS), UK. CLHH is funded by the Wellcome Trust, Medical Research Council, British Heart Foundation and McVeigh Benefaction

    Arrhythmic substrate, slowed propagation and increased dispersion in conduction direction in the right ventricular outflow tract of murine Scn5a+/- hearts.

    Get PDF
    AIM: To test a hypothesis attributing arrhythmia in Brugada Syndrome to right ventricular (RV) outflow tract (RVOT) conduction abnormalities arising from Nav 1.5 insufficiency and fibrotic change. METHODS: Arrhythmic properties of Langendorff-perfused Scn5a+/- and wild-type mouse hearts were correlated with ventricular effective refractory periods (VERPs), multi-electrode array (MEA) measurements of action potential (AP) conduction velocities and dispersions in conduction direction (CD), Nav 1.5 expression levels, and fibrotic change, as measured at the RVOT and RV. Two-way anova was used to test for both independent and interacting effects of anatomical region and genotype on these parameters. RESULTS: Scn5a+/- hearts showed greater arrhythmic frequencies during programmed electrical stimulation at the RVOT but not the RV. The Scn5a+/- genotype caused an independent increase of VERP regardless of whether the recording site was the RVOT or RV. Effective AP conduction velocities (CV†s), derived from fitting regression planes to arrays of observed local activation times were reduced in Scn5a+/- hearts and at the RVOT independently. AP conduction velocity magnitudes derived by averaging MEA results from local vector analyses, CV*, were reduced by the Scn5a+/- genotype alone. In contrast, dispersions in conduction direction, were greater in the RVOT than the RV, when the atrioventricular node was used as the pacing site. The observed reductions in Nav 1.5 expression were attributable to Scn5a+/-, whereas increased levels of fibrosis were associated with the RVOT. CONCLUSIONS: The Scn5a+/- RVOT recapitulates clinical findings of increased arrhythmogenicity through reduced CV† reflecting reduced CV* attributable to reduced Nav 1.5 expression and increased CD attributable to fibrosis

    Calcium-dependent Nedd4-2 upregulation mediates degradation of the cardiac sodium channel Nav1.5: implications for heart failure

    Get PDF
    Aim Reductions in voltage-gated sodium channel (Nav1.5) function/expression provide a slowed-conduction substrate for cardiac arrhythmias. Nedd4-2, which is activated by calcium, post-translationally modulates Nav1.5. We aim to investigate whether elevated intracellular calcium ([Ca2+^{2+}]i_{i}) reduces Nav1.5 through Nedd4-2 and its role in heart failure (HF). Methods Using a combination of biochemical, electrophysiological, cellular and in vivo methods, we tested the effect and mechanism of calcium on Nedd4-2 and in turn Nav1.5. Results Increased [Ca2+^{2+}]i_{i}, following 24-h ionomycin treatment, decreased sodium current (INa_{Na}) density and Nav1.5 protein without altering its mRNA in both neonatal rat cardiomyocytes (NRCMs) and HEK 293 cells stably expressing Nav1.5. The calcium chelator BAPTA-AM restored the reduced Nav1.5 and INa_{Na} in NRCMs pre-treated by ionomycin. Nav1.5 was decreased by Nedd4-2 transfection and further decreased by 6-h ionomycin treatment. These effects were not observed in cells transfected with the catalytically inactive mutant, Nedd4-2 C801S, or with Y1977A-Nav1.5 mutant containing the impaired Nedd4-2 binding motif. Furthermore, elevated [Ca2+^{2+}]i_{i} increased Nedd4-2, the interaction between Nedd4-2 and Nav1.5, and Nav1.5 ubiquitination. Nav1.5 protein is decreased, whereas Nedd4-2 is increased in volume-overload HF rat hearts, with increased co-localization of Nav1.5 with ubiquitin or Nedd4-2 as indicated by immunofluorescence staining. BAPTA-AM rescued the reduced Nav1.5 protein, INa_{Na} and increased Nedd4-2 in hypertrophied NRCMs induced by isoproterenol or angiotensin II. Conclusion Calcium-mediated increases in Nedd4-2 downregulate Nav1.5 by ubiquitination. Nav1.5 is downregulated and co-localizes with Nedd4-2 and ubiquitin in failing rat heart. These data suggest a role of Nedd4-2 in Nav1.5 downregulation in HF.This work was supported by the National Natural Science Foundation of China (No. 30801216), Royal Society/National Science Foundation of China International Joint Project Grant (JP100994/No. 81211130599) and the Fundamental Research Funds for the Central Universities (No. 2015GJHZ23)

    Arrhythmic effects of Epac-mediated ryanodine receptor activation in Langendorff-perfused murine hearts are associated with reduced conduction velocity

    No full text
    Recent papers have attributed arrhythmic substrate in murine RyR2-P2328S hearts to reduced action potential (AP) conduction velocities (CV), reflecting acute functional inhibition and/or reduced expression of sodium channels. We explored for acute effects of direct Epac (exchange protein directly activated by cAMP)-mediated ryanodine receptor-2 (RyR2) activation on arrhythmic substrate and CV. Monophasic action potential recordings demonstrated that initial steady (8-Hz) extrinsic pacing elicited ventricular tachycardia (VT) in 0 of 18 Langendorff-perfused wild-type mouse ventricles before pharmacological intervention. The Epac activator 8-CPT (8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate) (VT in 1 of 7 hearts), and the RyR2 blocker dantrolene, either alone (0 of 11) or with 8-CPT (0 of 9) did not then increase VT incidence (p>0.05). Both progressively increased pacing rates and programmed extrasystolic (S2) stimuli similarly produced no VT in untreated hearts (n = 20 and n = 9 respectively). 8-CPT challenge then increased VT incidences (5 of 7 and 4 of 8 hearts respectively; p0.05). 8-CPT but not dantrolene, whether alone or combined with 8-CPT, correspondingly increased AP latencies (1.14±0.04 (n=7), 1.04±0.03 (n=10), 1.09±0.05 (n=8) relative to respective control values). In contrast, AP durations, conditions for 2:1 conduction block and ventricular effective refractory periods remained unchanged throughout. We thus demonstrate for the first time that acute RyR2 activation reversibly induces VT in specific association with reduced CV

    Cytoplasm resistivity of Mammalian atrial myocardium determined by dielectrophoresis and impedance methods.

    No full text
    Many cardiac arrhythmias are caused by slowed conduction of action potentials, which in turn can be due to an abnormal increase of intracellular myocardial resistance. Intracellular resistivity is a linear sum of that offered by gap junctions between contiguous cells and the cytoplasm of the myocytes themselves. However, the relative contribution of the two components is unclear, especially in atrial myocardium, as there are no precise measurements of cytoplasmic resistivity, R(c). In this study, R(c) was measured in atrial tissue using several methods: a dielectrophoresis technique with isolated cells and impedance measurements with both isolated cells and multicellular preparations. All methods yielded similar values for R(c), with a mean of 138 ± 5 Ω·cm at 23°C, and a Q(10) value of 1.20. This value is about half that of total intracellular resistivity and thus will be a significant determinant of the actual value of action potential conduction velocity. The dielectrophoresis experiments demonstrated the importance of including divalent cations (Ca(2+) and Mg(2+)) in the suspension medium, as their omission reduced cell integrity by lowering membrane resistivity and increasing cytoplasm resistivity. Accurate measurement of R(c) is essential to develop quantitative computational models that determine the key factors contributing to the development of cardiac arrhythmias
    corecore