28 research outputs found

    On the rise: Climate change in New Zealand will cause sperm and blue whales to seek higher latitudes

    Full text link
    Climate impacts affect marine ecosystems worldwide with island nations such as New Zealand being extremely vulnerable because of their socio-economic and cultural dependence on the marine and costal environment. Cetaceans are ideal indicator species of ecosystem change and ocean health given their extended life span and cosmopolitan distribution, but limited data availability prevents anticipating change in distribution under future climate changes. We projected the range shifts of a key odontocete and mysticete species (Physeter macrocephalus and Balaenoptera musculus) in 2100 relative to present day in New Zealand waters, using an ensemble modelling approach, under three climate change scenarios of different severity. The results show a latitudinal shift in suitable habitat for both whale species, increasing in magnitude with severity of sea surface temperature warming. The most severe climate change scenario tested generated 56% and 42% loss and decrease of currently suitable habitat for sperm and blue whales, respectively, mostly in New Zealand’s northern waters. These predicted changes will have a strong impact on the ecosystem functioning and services in New Zealand’s northern waters but also in coastal areas (critical for the species’ foraging and survival). Not only do these simulated range shifts help to identify future potential climate refugia to mitigate a global warming, they also generate a range of socioeconomic consequences for island nations relying on wildlife tourism, industry, and environmental protection

    The First Australians grew to a population of millions, much more than previous estimates

    Get PDF
    We know it is more than 60,000 years since the first people entered the continent of Sahul — the giant landmass that connected New Guinea, Australia and Tasmania when sea levels were lower than today. But where the earliest people moved across the landscape, how fast they moved, and how many were involved, have been shrouded in mystery. Our latest research, published today shows the establishment of populations in every part of this giant continent could have occurred in as little as 5,000 years. And the entire population of Sahul could have been as high as 6.4 million people. This translates to more than 3 million people in the area that is now modern-day Australia, far more than any previous estimate

    We mapped the ‘super-highways’ the First Australians used to cross the ancient land

    Get PDF
    There are many hypotheses about where the Indigenous ancestors first settled in Australia tens of thousands of years ago, but evidence is scarce. Few archaeological sites date to these early times. Sea levels were much lower and Australia was connected to New Guinea and Tasmania in a land known as Sahul that was 30% bigger than Australia is today. Our latest research advances our knowledge about the most likely routes those early Australians travelled as they peopled this giant continent

    Directionally supervised cellular automaton for the initial peopling of Sahul

    Get PDF
    Reconstructing the patterns of Homo sapiens expansion out of Africa and across the globe has been advanced using demographic and travel-cost models. However, modelled routes are ipso facto influenced by migration rates, and vice versa. We combined movement ‘superhighways’ with a demographic cellular automaton to predict one of the world’s earliest peopling events — Sahul between 75,000–50,000 years ago. Novel outcomes from the superhighways weighted model include (i) an approximate doubling of the predicted time to continental saturation (~ 10,000 years) compared to that based on the directionally unsupervised model (~5,000 years), suggesting that rates of migration need to account for topographical constraints in addition to rate of saturation; (ii) a previously undetected movement corridor south through the centre of Sahul early in the expansion wave based on the scenarios assuming two dominant entry points into Sahul; and (iii) a better fit to the spatially de-biased, Signor-Lipps corrected layer of initial arrival inferred from dated archaeological material. Our combined model infrastructure provides a data-driven means to examine how people initially moved through, settled, and abandoned different regions of the globe

    Early human settlement of Sahul was not an accident

    Get PDF
    The first peopling of Sahul (Australia, New Guinea and the Aru Islands joined at lower sea levels) by anatomically modern humans required multiple maritime crossings through Wallacea, with at least one approaching 100 km. Whether these crossings were accidental or intentional is unknown. Using coastal-viewshed analysis and ocean drift modelling combined with population projections, we show that the probability of randomly reaching Sahul by any route is <5% until ≄40 adults are ‘washed off’ an island at least once every 20 years. We then demonstrate that choosing a time of departure and making minimal headway (0.5 knots) toward a destination greatly increases the likelihood of arrival. While drift modelling demonstrates the existence of ‘bottleneck’ crossings on all routes, arrival via New Guinea is more likely than via northwestern Australia. We conclude that anatomically modern humans had the capacity to plan and make open-sea voyages lasting several days by at least 50,000 years ago

    Landscape rules predict optimal superhighways for the first peopling of Sahul

    Get PDF
    Archaeological data and demographic modelling suggest that the peopling of Sahul required substantial populations, occurred rapidly within a few thousand years and encompassed environments ranging from hyper-arid deserts to temperate uplands and tropical rainforests. How this migration occurred and how humans responded to the physical environments they encountered have, however, remained largely speculative. By constructing a high-resolution digital elevation model for Sahul and coupling it with fine-scale viewshed analysis of landscape prominence, least-cost pedestrian travel modelling and high-performance computing, we create over 125 billion potential migratory pathways, whereby the most parsimonious routes traversed emerge. Our analysis revealed several major pathways—superhighways—transecting the continent, that we evaluated using archaeological data. These results suggest that the earliest Australian ancestors adopted a set of fundamental rules shaped by physiological capacity, attraction to visually prominent landscape features and freshwater distribution to maximize survival, even without previous experience of the landscapes they encountered

    Damage costs from invasive species exceed management expenditure in nations experiencing lower economic activity

    Get PDF
    Financial disclosure The InvaCost project was funded by the French National Research Agency (ANR-14-CE02-0021), the BNP-Paribas Foundation Climate Initiative, the AXA Research Fund Chair of Invasion Biology of University Paris Saclay and by the BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios (AlienScenarios; BMBF/PT DLR 01LC1807C). M.K. received funding from the European Union's Horizon 2020 research programme under a Marie SkƂodowska-Curie grant agreement 899546. C.J.A.B. acknowledges the Australian Research Council (CE170100015) for support. A.B. acknowledges Azim Premji University's grants programme (UNIV-RC00326) for support.Peer reviewe

    Dredging activity in a highly urbanised estuary did not affect the long-term occurrence of Indo-Pacific bottlenose dolphins and long-nosed fur seals

    Full text link
    Dredging is an excavation activity used worldwide in marine and freshwater environments to create, deepen, and maintain waterways, harbours, channels, locks, docks, berths, river entrances, and approaches to ports and boat ramps. However, dredging impacts on marine life, including marine mammals (cetaceans, pinnipeds, and sirenians), remain largely unknown. Here we quantified the effect of dredging operations in 2005 and 2019 on the occurrence of Indo-Pacific bottlenose dolphins (Tursiops aduncus) and long-nosed fur seals (Arctocephalus forsteri) in the Port River estuary, a highly urbanized estuary in Adelaide, South Australia. We applied generalised linear models to two long-term sighting datasets (dolphins: 1992–2020, fur seals: 2010–2020), to analyse changes in sighting rates as a function of dredging operations, season, rainfall, and sea surface temperature. We showed that the fluctuations in both dolphin and fur seal occurrences were not correlated with dredging operations, whereas sea surface temperature and season were stronger predictors of both species sighting rates (with seals more prevalent during the colder months, and dolphins in summer). Given the highly industrial environment of the Port River estuary, it is possible that animals in this area are habituated to high noise levels and therefore were not disturbed by dredging operations. Future research would benefit from analysing short-term effects of dredging operations on behaviour, movement patterns and habitat use to determine effects of possible habitat alteration caused by dredging

    Climate or migration: what limited European beech post-glacial colonization?

    No full text
    International audienceAimDespite the recent improvements made in species distribution models (SDMs), assessing species' ability to migrate fast enough to track their climate optimum remains a challenge. This study achieves this goal and demonstrates the reliability of a process‐based SDM to provide accurate projections by simulating the post‐glacial colonization of European beech.LocationEurope.MethodsWe simulated the post‐glacial colonization of European beech over the last 12,000 years by coupling a process‐based SDM (PHENOFIT) and a new migration model based on Gibbs point processes, both parameterized with modern ecological data. Simulations were compared with palaeoarchives and phylogeographic data on European beech.ResultsModel predictions are consistent with palaeoarchives and phylogeographic data over the Holocene. The results suggest that post‐glacial expansion of European beech was limited by climate on its north‐eastern leading edge, while limited by its migration abilities on its north‐western leading edge. The results show a mean migration rate of beech varying from 270 m yr −1 to 280 m yr−1 and a maximum migration rate varying from 560 m yr−1 to 630 m yr−1, when limited and not limited by climate, respectively. They also highlight the relative contribution of known and suspected glacial refugia in present beech distribution and confirm the results of phylogeographic studies.Main conclusionsFor the first time, we were able to reproduce accurately the colonization dynamics of European beech during the last 12 kyr using a process‐based SDM and a migration model, both parameterized with modern ecological data. Our methodology has allowed us to identify the different factors that affected European beech migration during its post‐glaciation expansion in different parts of its range. This method shows great potential to help palaeobotanists and phylogeographers locate putative glacial refugia, and to provide accurate projections of beech distribution change in the future
    corecore