38 research outputs found

    Burden of Adverse Metabolic Factors Is Associated With Increased Left Ventricular Concentricity in Adults With Normal-Range Body Mass Index: The Framingham Heart Study

    Get PDF
    Introduction: Persons with normal-range body mass index (BMI) but adverse metabolic characteristics associated with obesity have been described as metabolically-obese normal weight (MONW). We sought to determine whether adverse metabolic profile is associated with alterations in left ventricular (LV) structure or function among adults with normal BMI. Methods: From the 1794 Framingham Heart Study Offspring cohort adults who underwent cardiac magnetic resonance imaging (CMRI) , we identified 446 free of non-skin cancer and prevalent clinical cardiovascular disease (CVD) who had 18.5≤BMI\u3c25.0 kg/m2 and complete covariates. We calculated a metabolic score (MS) where 1 point was assigned for each of: a) fasting glucose≥100 mg/dL or diabetes; b) SBP≥140 or DBP≥90 mmHg or antihypertensive treatment; c) TG≥150 or HDL_C \u3c40(M)/\u3c50(W) mg/dL or lipid treatment; d) HOMA-IR≥2.5; e) waist circumference ≥102/88cm for M/W. Participants were classified as MS0 (no points), MS1 (exactly 1 point), or MS2+ (≥2 points). LV mass (LVM), end-diastolic volume (EDV), ejection fraction (EF), and concentricity (LVM/EDV) were measured from breathhold cine SSFP CMR scans; we calculated LVM/BSA. Analysis of covariance (ANCOVA) was used to compare MS1 and MS2+ groups to the MS0 group. CMRI variables were adjusted for sex, age, heart rate (HR) and body size (BSA); LVM/BSA was adjusted for sex, age, HR only. We also tested for linear trend across metabolic groups. Results: LV concentricity increased with worsening metabolic status. This was driven by lower LV EDV, not increased LVM. LVM did not differ across (trend) or between MS-groups. LVEDV decreased across groups but only MS2 differed significantly from MS0. LVEF increased slightly but significantly across MS-groups. Conclusions: In a community-dwelling cohort, among participants who were free of cancer and clinical CVD and had normal BMI, worsening metabolic profile was associated with adverse remodeling of the left ventricle, reflected by greater LV concentricity

    Pericardial Fat Thickness Increases with Greater Burden of Adverse Metabolic Factors Among Adults with Normal-Range Body Mass Index: The Framingham Heart Study

    Get PDF
    Introduction: Greater burden of pericardial fat is associated with increased body mass index (BMI). Obesity is associated with unfavorable metabolic characteristics such as hypertension, dyslipidemia, and glucose intolerance. We sought to determine whether unfavorable metabolic profile alone, in the absence of excess BMI, was itself associated with increased pericardial fat thickness (PFT). Methods:From the 1,794 Framingham Offspring cohort adults who underwent cardiac magnetic resonance (CMR), we identified 446 free of non-skin cancer and prevalent clinical cardiovascular disease (CVD) who had 18.5≤BMI2and complete covariates. We calculated a metabolic score (MS) based on ATPIII criteria where 1 point was assigned for each of: a) fasting glucose≥100 mg/dL or diabetes; b) SBP≥130 or DBP≥85 mmHg or antihypertensive treatment; c) triglycerides≥150 mg/dL; d) HDL cholesterol \u3c40(M)/ Results: PFT increased with worsening metabolic score at the fixed locations of the apical and mid-level RV, as well as at maximal PFT. On pairwise comparisons, only the MS3+ group had PFT that was consistently significantly greater than that of MS0. Conclusions: In a community-dwelling cohort, among participants who were free of cancer and clinical CVD and had normal-range or BMI, worsening metabolic profile was associated with increased pericardial fat thickness

    Cardiovascular Magnetic Resonance Characterization of Mitral Valve Prolapse

    Get PDF
    ObjectivesThis study sought to develop cardiovascular magnetic resonance (CMR) diagnostic criteria for mitral valve prolapse (MVP) using echocardiography as the gold standard and to characterize MVP using cine CMR and late gadolinium enhancement (LGE)-CMR.BackgroundMitral valve prolapse is a common valvular heart disease with significant complications. Cardiovascular magnetic resonance is a valuable imaging tool for assessing ventricular function, quantifying regurgitant lesions, and identifying fibrosis, but its potential role in evaluating MVP has not been defined.MethodsTo develop CMR diagnostic criteria for MVP, characterize mitral valve morphology, we analyzed transthoracic echocardiography and cine CMR images from 25 MVP patients and 25 control subjects. Leaflet thickness, length, mitral annular diameters, and prolapsed distance were measured. Two- and three-dimensional LGE-CMR images were obtained in 16 MVP and 10 control patients to identify myocardial regions of fibrosis in MVP.ResultsWe found that a 2-mm threshold for leaflet excursion into the left atrium in the left ventricular outflow tract long-axis view yielded 100% sensitivity and 100% specificity for CMR using transthoracic echocardiography as the clinical gold standard. Compared with control subjects, CMR identified MVP patients as having thicker (3.2 ± 0.1 mm vs. 2.3 ± 0.1 mm) and longer (10.5 ± 0.5 mm/m2 vs. 7.1 ± 0.3 mm/m2) indexed posterior leaflets and larger indexed mitral annular diameters (27.8 ± 0.7 mm/m2 vs. 21.5 ± 0.5 mm/m2 for long axis and 22.9 ±0.7 mm/m2 vs. 17.8 ± 0.6 mm/m2 for short axis). In addition, we identified focal regions of LGE in the papillary muscles suggestive of fibrosis in 10 (63%) of 16 MVP patients and in 0 of 10 control subjects. Papillary muscle LGE was associated with the presence of complex ventricular arrhythmias in MVP patients.ConclusionsCardiovascular magnetic resonance image can identify MVP by the same echocardiographic criteria and can identify myocardial fibrosis involving the papillary muscle in MVP patients. Hyperenhancement of papillary muscles on LGE is often present in a subgroup of patients with complex ventricular arrhythmias
    corecore