185 research outputs found
L-band radar sensing of soil moisture
The performance of an L-band, 25 cm wavelength imaging synthetic aperture radar was assessed for soil moisture determination, and the temporal variability of radar returns from a number of agricultural fields was studied. A series of three overflights was accomplished over an agricultural test site in Kern County, California. Soil moisture samples were collected from bare fields at nine sites at depths of 0-2, 2-5, 5-15, and 15-30 cm. These gravimetric measurements were converted to percent of field capacity for correlation to the radar return signal. The initial signal film was optically correlated and scanned to produce image data numbers. These numbers were then converted to relative return power by linear interpolation of the noise power wedge which was introduced in 5 dB steps into the original signal film before and after each data run. Results of correlations between the relative return power and percent of field capacity (FC) demonstrate that the relative return power from this imaging radar system is responsive to the amount of soil moisture in bare fields. The signal returned from dry (15% FC) and wet (130% FC) fields where furrowing is parallel to the radar beam differs by about 10 dB
MODIS information, data and control system (MIDACS) operations concepts
The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios
Current Algebra and Conformal Field Theory on a Figure Eight
We examine the dynamics of a free massless scalar field on a figure eight
network. Upon requiring the scalar field to have a well defined value at the
junction of the network, it is seen that the conserved currents of the theory
satisfy Kirchhoff's law, that is that the current flowing into the junction
equals the current flowing out. We obtain the corresponding current algebra and
show that, unlike on a circle, the left- and right-moving currents on the
figure eight do not in general commute in quantum theory. Since a free scalar
field theory on a one dimensional spatial manifold exhibits conformal symmetry,
it is natural to ask whether an analogous symmetry can be defined for the
figure eight. We find that, unlike in the case of a manifold, the action plus
boundary conditions for the network are not invariant under separate conformal
transformations associated with left- and right-movers. Instead, the system is,
at best, invariant under only a single set of transformations. Its conserved
current is also found to satisfy Kirchhoff's law at the junction. We obtain the
associated conserved charges, and show that they generate a Virasoro algebra.
Its conformal anomaly (central charge) is computed for special values of the
parameters characterizing the network.Comment: 39 pages; Latex with 1 figure included in encapsulated postscript
format. psbox.tex require
Hot String Soup
Above the Hagedorn energy density closed fundamental strings form a long
string phase. The dynamics of weakly interacting long strings is described by a
simple Boltzmann equation which can be solved explicitly for equilibrium
distributions. The average total number of long strings grows logarithmically
with total energy in the microcanonical ensemble. This is consistent with
calculations of the free single string density of states provided the
thermodynamic limit is carefully defined. If the theory contains open strings
the long string phase is suppressed.Comment: 13 pages, no figures, uses LaTex, some errors in equations have been
corrected, NSF-ITP-94-83, UCSBTH-94-3
MODIS information, data and control system (MIDACS) level 2 functional requirements
The MODIS Information, Data and Control System (MIDACS) Level 2 Functional Requirements Document establishes the functional requirements for MIDACS and provides a basis for the mutual understanding between the users and the designers of the EosDIS, including the requirements, operating environment, external interfaces, and development plan. In defining the requirements and scope of the system, this document describes how MIDACS will operate as an element of the EOS within the EosDIS environment. This version of the Level 2 Requirements Document follows an earlier release of a preliminary draft version. The sections on functional and performance requirements do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. Indeed, the team members have not yet been selected and the team has not yet been formed; however, it has been possible to identify many relevant requirements based on the present concept of EosDIS and through interviews and meetings with key members of the scientific community. These requirements have been grouped by functional component of the data system, and by function within each component. These requirements have been merged with the complete set of Level 1 and Level 2 context diagrams, data flow diagrams, and data dictionary
MODIS-HIRIS ground data systems commonality report
The High Resolution Imaging Spectrometer (HIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) Data Systems Working Group was formed in September 1988 with representatives of the MODIS Data System Study Group and the HIRIS Project Data System Design Group to collaborate in the development of requirements on the EosDIS necessary to meet the science objectives of the two facility instruments. A major objective was to identify and promote commonality between the HIRIS and MODIS data systems, especially from the science users' point of view. A goal was to provide a base set of joint requirements and specifications which could easily be expanded to a Phase-B representation of the needs of the science users of all EOS instruments. This document describes the points of commonality and difference between the Level-II Requirements, Operations Concepts, and Systems Specifications for the ground data systems for the MODIS and HIRIS instruments at their present state of development
MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design
The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community
Self Gravitating Fundamental Strings
We study the configuration of a typical highly excited string as one slowly
increases the string coupling. The dominant interactions are the long range
dilaton and gravitational attraction. In four spacetime dimensions, the string
slowly contracts from its initial (large) size until it approaches the string
scale where it forms a black hole. In higher dimensions, the string stays large
until the coupling reaches a critical value, and then it rapidly collapses to a
black hole. The implications for the recently proposed correspondence principle
are discussed.Comment: 20 pages, LaTe
Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation
The connection between many-body theory (MBPT)--in perturbative and
non-perturbative form--and quantum-electrodynamics (QED) is reviewed for
systems of two fermions in an external field. The treatment is mainly based
upon the recently developed covariant-evolution-operator method for QED
calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a
structure quite akin to that of many-body perturbation theory. At the same time
this procedure is closely connected to the S-matrix and the Green's-function
formalisms and can therefore serve as a bridge between various approaches. It
is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to
a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A
Bloch equation in commutator form that can be used for an "extended" or
quasi-degenerate model space is derived. It has the same relation to the BS
equation as has the standard Bloch equation to the ordinary Schroedinger
equation and can be used to generate a perturbation expansion compatible with
the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic
Isotope shift in the electron affinity of chlorine
The specific mass shift in the electron affinity between ^{35}Cl and ^{37}Cl
has been determined by tunable laser photodetachment spectroscopy to be
-0.51(14) GHz. The isotope shift was observed as a difference in the onset of
the photodetachment process for the two isotopes. In addition, the electron
affinity of Cl was found to be 29138.59(22) cm^{-1}, giving a factor of 2
improvement in the accuracy over earlier measurements. Many-body calculations
including lowest-order correlation effects demonstrates the sensitivity of the
specific mass shift and show that the inclusion of higher-order correlation
effects would be necessary for a quantitative description.Comment: 16 pages, 6 figures, LaTeX2e, amsmat
- …