727 research outputs found

    Insights on a methanation catalyst aging process: Aging characterization and kinetic study

    Get PDF
    Power to gas systems is one of the most interesting long-term energy storage solutions. As a result of the high exothermicity of the CO2 methanation reaction, the catalyst in the methanation subsystem is subjected to thermal stress. Therefore, the performance of a commercial Ni/Al2O3 catalyst was investigated over a series of 100 hour-long tests and in-process relevant conditions, i.e. 5 bar from 270 to 500 °C. Different characterization techniques were employed to determine the mechanism of the observed performance loss (N2 physisorption, XRD, TPO). The TPO analysis excluded carbon deposition as a possible cause of catalyst aging. The BET analysis evidenced a severe reduction in the total surface area for the catalyst samples tested at higher temperatures. Furthermore, a direct correlation was found between the catalyst activity decline and the drop of the catalyst specific surface. In order to correctly design a reliable methanation reactor, it is essential to have a kinetic model that includes also the aging kinetics. For this purpose, the second set of experiments was carried out, in order to determine the intrinsic kinetics of the catalyst. The kinetic parameters were identified by using nonlinear regression analysis. Finally, a power-law aging model was proposed to consider the performance loss in time

    Point Defects in Two-Dimensional Indium Selenide as Tunable Single-Photon Sources

    Get PDF
    In the past few years remarkable interest has been kindled by the development of nonclassical light sources and, in particular, of single-photon emitters (SPE), which represent fundamental building blocks for optical quantum technology. In this Letter, we analyze the stability and electronic properties of an InSe monolayer with point defects with the aim of demonstrating its applicability as an SPE. The presence of deep defect states within the InSe band gap is verified when considering substitutional defects with atoms belonging to group IV, V, and VI. In particular, the optical properties of Ge as substitution impurity of Se predicted by solving the Bethe-Salpeter equation on top of the GW corrected electronic states show that transitions between the valence band maximum and the defect state are responsible for the absorption and spontaneous emission processes, so that the latter results in a strongly peaked spectrum in the near-infrared. These properties, together with a high localization of the involved electronic states, appear encouraging in the quest for novel SPE materials

    Untargeted metabolomic profile for the detection of prostate carcinoma-preliminary results from PARAFAC2 and PLS-DA Models

    Get PDF
    Prostate-specific antigen (PSA) is the main biomarker for the screening of prostate cancer (PCa), which has a high sensibility (higher than 80%) that is negatively offset by its poor specificity (only 30%, with the European cut-off of 4 ng/mL). This generates a large number of useless biopsies, involving both risks for the patients and costs for the national healthcare systems. Consequently, efforts were recently made to discover new biomarkers useful for PCa screening, including our proposal of interpreting a multi-parametric urinary steroidal profile with multivariate statistics. This approach has been expanded to investigate new alleged biomarkers by the application of untargeted urinary metabolomics. Urine samples from 91 patients (43 affected by PCa; 48 by benign hyperplasia) were deconjugated, extracted in both basic and acidic conditions, derivatized with different reagents, and analyzed with different gas chromatographic columns. Three-dimensional data were obtained from full-scan electron impact mass spectra. The PARADISe software, coupled with NIST libraries, was employed for the computation of PARAFAC2 models, the extraction of the significative components (alleged biomarkers), and the generation of a semiquantitative dataset. After variables selection, a partial least squares–discriminant analysis classification model was built, yielding promising performances. The selected biomarkers need further validation, possibly involving, yet again, a targeted approach

    An Unusual Cause of Dementia: Essential Diagnostic Elements of Corticobasal Degeneration—A Case Report and Review of the Literature

    Get PDF
    Corticobasal degeneration (CBD) is an uncommon, sporadic, neurodegenerative disorder of mid- to late-adult life. We describe a further example of the pathologic heterogeneity of this condition. A 71-year-old woman initially presented dysarthria, clumsiness, progressive asymmetric bradykinesia, and rigidity in left arm. Rigidity gradually involved ipsilateral leg; postural instability with falls, blepharospasm, and dysphagia subsequently developed. She has been previously diagnosed as unresponsive Parkinson's Disease. At our clinical examination, she presented left upper-arm-fixed-dystonia, spasticity in left lower limb and pyramidal signs (Babinski and Hoffmann). Brain MRI showed asymmetric cortical atrophy in the right frontotemporal cortex. Neuropsychological examination showed an impairment in visuospatial functioning, frontal-executive dysfunction, and hemineglect. This case demonstrates that association of asymmetrical focal cortical and subcortical features remains the clinical hallmark of this condition. There are no absolute markers for the clinical diagnosis that is complicated by the variability of presentation involving also cognitive symptoms that are reviewed in the paper. Despite the difficulty of diagnosing CBD, somatosensory evoked potentials, motor evoked potentials, long latency reflexes, and correlations between results on electroencephalography (EEG) and electromyography (EMG) provide further support for a CBD diagnosis. These techniques are also used to identify neurophysiological correlates of the neurological signs of the disease
    corecore