92 research outputs found

    APC Activation Restores Functional CD4+CD25+ Regulatory T Cells in NOD Mice that Can Prevent Diabetes Development

    Get PDF
    BACKGROUND: Defects in APC and regulatory cells are associated with diabetes development in NOD mice. We have shown previously that NOD APC are not effective at stimulating CD4(+)CD25(+) regulatory cell function in vitro. We hypothesize that failure of NOD APC to properly activate CD4(+)CD25(+) regulatory cells in vivo could compromise their ability to control pathogenic cells, and activation of NOD APC could restore this defect, thereby preventing disease. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, we used the well-documented ability of complete Freund's adjuvant (CFA), an APC activator, to prevent disease in NOD mice. Phenotype and function of CD4(+)CD25(+) regulatory cells from untreated and CFA-treated NOD mice were determined by FACS, and in vitro and in vivo assays. APC from these mice were also evaluated for their ability to activate regulatory cells in vitro. We have found that sick NOD CD4(+)CD25(+) cells expressed Foxp3 at the same percentages, but decreased levels per cell, compared to young NOD or non-NOD controls. Treatment with CFA increased Foxp3 expression in NOD cells, and also increased the percentages of CD4(+)CD25(+)Foxp3(+) cells infiltrating the pancreas compared to untreated NOD mice. Moreover, CD4(+)CD25(+) cells from pancreatic LN of CFA-treated, but not untreated, NOD mice transferred protection from diabetes. Finally, APC isolated from CFA-treated mice increased Foxp3 and granzyme B expression as well as regulatory function by NOD CD4(+)CD25(+) cells in vitro compared to APC from untreated NOD mice. CONCLUSIONS/SIGNIFICANCE: These data suggest that regulatory T cell function and ability to control pathogenic cells can be enhanced in NOD mice by activating NOD APC

    High Distribution of CD40 and TRAF2 in Th40 T Cell Rafts Leads to Preferential Survival of this Auto-Aggressive Population in Autoimmunity

    Get PDF
    CD40-CD154 interactions have proven critical in autoimmunity, with the identification of CD4(lo)CD40(+) T cells (Th40 cells) as harboring an autoaggressive T cell population shedding new insights into those disease processes. Th40 cells are present at contained levels in non-autoimmune individuals but are significantly expanded in autoimmunity. Th40 cells are necessary and sufficient in transferring type 1 diabetes in mouse models. However, little is known about CD40 signaling in T cells and whether there are differences in that signaling and subsequent outcome depending on disease conditions. When CD40 is engaged, CD40 and TNF-receptor associated factors, TRAFs, become associated with lipid raft microdomains. Dysregulation of T cell homeostasis is emerging as a major contributor to autoimmune disease and thwarted apoptosis is key in breaking homeostasis.Cells were sorted into CD4(hi) and CD4(lo) (Th40 cells) then treated and assayed either as whole or fractionated cell lysates. Protein expression was assayed by western blot and Nf-kappaB DNA-binding activity by electrophoretic mobility shifts. We demonstrate here that autoimmune NOD Th40 cells have drastically exaggerated expression of CD40 on a per-cell-basis compared to non-autoimmune BALB/c. Immediately ex-vivo, untreated Th40 cells from NOD mice have high levels of CD40 and TRAF2 associated with the raft microdomain while Th40 cells from NOR and BALB/c mice do not. CD40 engagement of Th40 cells induces Nf-kappaB DNA-binding activity and anti-apoptotic Bcl-X(L) expression in all three mouse strains. However, only in NOD Th40 cells is anti-apoptotic cFLIP(p43) induced which leads to preferential survival and proliferation. Importantly, CD40 engagement rescues NOD Th40 cells from Fas-induced death.CD40 may act as a switch between life and death promoting signals and NOD Th40 cells are poised for survival via this switch. This may explain how they expand in autoimmunity to thwart T cell homeostasis

    Apoptosis of Purified CD4+ T Cell Subsets Is Dominated by Cytokine Deprivation and Absence of Other Cells in New Onset Diabetic NOD Mice

    Get PDF
    BACKGROUND: Regulatory T cells (Treg) play a significant role in immune homeostasis and self-tolerance. Excessive sensitivity of isolated Treg to apoptosis has been demonstrated in NOD mice and humans suffering of type 1 diabetes, suggesting a possible role in the immune dysfunction that underlies autoimmune insulitis. In this study the sensitivity to apoptosis was measured in T cells from new onset diabetic NOD females, comparing purified subsets to mixed cultures. PRINCIPAL FINDINGS: Apoptotic cells are short lived in vivo and death occurs primarily during isolation, manipulation and culture. Excessive susceptibility of CD25(+) T cells to spontaneous apoptosis is characteristic of isolated subsets, however disappears when death is measured in mixed splenocyte cultures. In variance, CD25(-) T cells display balanced sensitivity to apoptosis under both conditions. The isolation procedure removes soluble factors, IL-2 playing a significant role in sustaining Treg viability. In addition, pro- and anti-apoptotic signals are transduced by cell-to-cell interactions: CD3 and CD28 protect CD25(+) T cells from apoptosis, and in parallel sensitize naïve effector cells to apoptosis. Treg viability is modulated both by other T cells and other subsets within mixed splenocyte cultures. Variations in sensitivity to apoptosis are often hindered by fast proliferation of viable cells, therefore cycling rates are mandatory to adequate interpretation of cell death assays. CONCLUSIONS: The sensitivity of purified Treg to apoptosis is dominated by cytokine deprivation and absence of cell-to-cell interactions, and deviate significantly from measurements in mixed populations. Balanced sensitivity of naïve/effector and regulatory T cells to apoptosis in NOD mice argues against the concept that differential susceptibility affects disease evolution and progression

    Systemic Toll-Like Receptor Stimulation Suppresses Experimental Allergic Asthma and Autoimmune Diabetes in NOD Mice

    Get PDF
    BackgroundInfections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Methods and Findings Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. Conclusions/Significance These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a plausible explanation for the hygiene hypothesis. They also open new therapeutic perspectives for the prevention of these pathologies

    Effector and Naturally Occurring Regulatory T Cells Display No Abnormalities in Activation Induced Cell Death in NOD Mice

    Get PDF
    BACKGROUND: Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS: Both effector (CD25(-), FoxP3(-)) and suppressor (CD25(+), FoxP3(+)) CD4(+) T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP trangeneess. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL) in both strains. The effector and suppressor CD4(+) subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4(+)CD25(-) T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. CONCLUSION: These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis

    Epithelial atypia in biopsies performed for microcalcifications. Practical considerations about 2,833 serially sectioned surgical biopsies with a long follow-up

    Get PDF
    This study analyzes the occurrence of epithelial atypia in 2,833 serially sectioned surgical breast biopsies (SB) performed for microcalcifications (median number of blocks per SB:26) and the occurrence of subsequent cancer after an initial diagnosis of epithelial atypia (median follow-up 160 months). Epithelial atypia (flat epithelial atypia, atypical ductal hyperplasia, and lobular neoplasia) were found in 971 SB, with and without a concomitant cancer in 301 (31%) and 670 (69%) SB, respectively. Thus, isolated epithelial atypia were found in 670 out of the 2,833 SB (23%). Concomitant cancers corresponded to ductal carcinomas in situ and micro-invasive (77%), invasive ductal carcinomas not otherwise specified (15%), invasive lobular carcinomas (4%), and tubular carcinomas (4%). Fifteen out of the 443 patients with isolated epithelial atypia developed a subsequent ipsilateral (n = 14) and contralateral (n = 1) invasive cancer. The high slide rating might explain the high percentages of epithelial atypia and concomitant cancers and the low percentage of subsequent cancer after a diagnosis of epithelial atypia as a single lesion. Epithelial atypia could be more a risk marker of concomitant than subsequent cancer

    Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autoimmune diabetes (T1D) onset is preceded by a long inflammatory process directed against the insulin-secreting β cells of the pancreas. Deciphering the early autoimmune mechanisms represents a challenge due to the absence of clinical signs at early disease stages. The aim of this study was to identify genes implicated in the early steps of the autoimmune process, prior to inflammation, in T1D. We have previously established that insulin autoantibodies (E-IAA) predict early diabetes onset delineating an early phenotypic check point (window 1) in disease pathogenesis. We used this sub-phenotype and applied differential gene expression analysis in the pancreatic lymph nodes (PLN) of 5 weeks old Non Obese Diabetic (NOD) mice differing solely upon the presence or absence of E-IAA. Analysis of gene expression profiles has the potential to provide a global understanding of the disease and to generate novel hypothesis concerning the initiation of the autoimmune process.</p> <p>Methods</p> <p>Animals have been screened weekly for the presence of E-IAA between 3 and 5 weeks of age. E-IAA positive or negative NOD mice at least twice were selected and RNAs isolated from the PLN were used for microarray analysis. Comparison of transcriptional profiles between positive and negative animals and functional annotations of the resulting differentially expressed genes, using software together with manual literature data mining, have been performed.</p> <p>Results</p> <p>The expression of 165 genes was modulated between E-IAA positive and negative PLN. In particular, genes coding for insulin and for proteins known to be implicated in tissue remodelling and Th1 immunity have been found to be highly differentially expressed. Forty one genes showed over 5 fold differences between the two sets of samples and 30 code for extracellular proteins. This class of proteins represents potential diagnostic markers and drug targets for T1D.</p> <p>Conclusion</p> <p>Our data strongly suggest that the immune related mechanisms taking place at this early age in the PLN, correlate with homeostatic changes influencing tissue integrity of the adjacent pancreatic tissue. Functional analysis of the identified genes suggested that similar mechanisms might be operating during pre-inflammatory processes deployed in tissues i) hosting parasitic microorganisms and ii) experiencing unrestricted invasion by tumour cells.</p

    Intra-tumoural microvessel density in human solid tumours

    Get PDF
    Over the last decade assessment of angiogenesis has emerged as a potentially useful biological prognostic and predictive factor in human solid tumours. With the development of highly specific endothelial markers that can be assessed in histological archival specimens, several quantitative studies have been performed in various solid tumours. The majority of published studies have shown a positive correlation between intra-tumoural microvessel density, a measure of tumour angiogenesis, and prognosis in solid tumours. A minority of studies have not demonstrated an association and this may be attributed to significant differences in the methodologies employed for sample selection, immunostaining techniques, vessel counting and statistical analysis, although a number of biological differences may account for the discrepancy. In this review we evaluate the quantification of angiogenesis by immunohistochemistry, the relationship between tumour vascularity and metastasis, and the clinicopathological studies correlating intra-tumoral microvessel density with prognosis and response to anti-cancer therapy. In view of the extensive nature of this retrospective body of data, comparative studies are needed to identify the optimum technique and endothelial antigens (activated or pan-endothelial antigens) but subsequently prospective studies that allocate treatment on the basis of microvessel density are required

    Mammographic density and breast cancer risk: current understanding and future prospects

    Get PDF
    Variations in percent mammographic density (PMD) reflect variations in the amounts of collagen and number of epithelial and non-epithelial cells in the breast. Extensive PMD is associated with a markedly increased risk of invasive breast cancer. The PMD phenotype is important in the context of breast cancer prevention because extensive PMD is common in the population, is strongly associated with risk of the disease, and, unlike most breast cancer risk factors, can be changed. Work now in progress makes it likely that measurement of PMD will be improved in the near future and that understanding of the genetics and biological basis of the association of PMD with breast cancer risk will also improve. Future prospects for the application of PMD include mammographic screening, risk prediction in individuals, breast cancer prevention research, and clinical decision making
    corecore