28 research outputs found
Formyltetrahydrofolate Synthetase Gene Diversity in the Guts of Higher Termites with Different Diets and Lifestyles
In this study, we examine gene diversity for formyl-tetrahydrofolate synthetase (FTHFS), a key enzyme in homoacetogenesis, recovered from the gut microbiota of six species of higher termites. The "higher" termites (family Termitidae), which represent the majority of extant termite species and genera, engage in a broader diversity of feeding and nesting styles than the "lower" termites. Previous studies of termite gut homoacetogenesis have focused on wood-feeding lower termites, from which the preponderance of FTHFS sequences recovered were related to those from acetogenic treponemes. While sequences belonging to this group were present in the guts of all six higher termites examined, treponeme-like FTHFS sequences represented the majority of recovered sequences in only two species (a wood-feeding Nasutitermes sp. and a palm-feeding Microcerotermes sp.). The remaining four termite species analyzed (a Gnathamitermes sp. and two Amitermes spp. that were recovered from subterranean nests with indeterminate feeding strategies and a litter-feeding Rhynchotermes sp.) yielded novel FTHFS clades not observed in lower termites. These termites yielded two distinct clusters of probable purinolytic Firmicutes and a large group of potential homoacetogens related to sequences previously recovered from the guts of omnivorous cockroaches. These findings suggest that the gut environments of different higher termite species may select for different groups of homoacetogens, with some species hosting treponeme-dominated homoacetogen populations similar to those of wood-feeding, lower termites while others host Firmicutes-dominated communities more similar to those of omnivorous cockroaches
Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach
Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities
Community and cultivation analysis of arsenite oxidizing biofilms at Hot Creek
At Hot Creek in California, geothermally derived arsenite is rapidly oxidized to arsenate. This process is mediated by microorganisms colonizing the surfaces of submerged aquatic macrophytes in the creek. Here we describe a multifaceted approach to characterizing this biofilm community and its activity. Molecular techniques were used to describe the community as a function of 16S-rRNA gene diversity. Cultivation-based strategies were used to enumerate and isolate three novel arsenite oxidizers, strains YED1-18, YED6-4 and YED6-21. All three strains are β-Proteobacteria, of the genus Hydrogenophaga. Because these strains were isolated from the highest (i.e. million-fold) dilutions of disrupted biofilm suspensions, they represent the most numerically significant arsenite oxidizers recovered from this community. One clone (Hot Creek Clone 44) obtained from an inventory of the 16S rDNA sequence diversity present in the biofilm was found to be 99.6% identical to the 16S rDNA sequence of the isolate YED6-21. On the basis of most probable number (MPN) analyses, arsenite-oxidizing bacteria were found to account for 6-56% of the cultivated members of the community. Using MPN values, we could estimate an upper bound on the value of Vmax for the community of 1 × 10-9 μmole arsenite min-1 cell-1. This estimate represents the first normalization of arsenite oxidation rates to MPN cell densities for a microbial community in a field incubation experiment. © 2005 Society for Applied Microbiology and Blackwell Publishing Ltd
A new streaked soft x-ray imager for the National Ignition Facility.
A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF's x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were used to gate on photon energy ranges of approximately 300-510 eV and 200-400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots