103 research outputs found

    Post-operative nonketotic hyperglycemic induced focal motor status epilepticus related to treatment with corticosteroids following standard anterior temporal lobectomy

    Get PDF
    •Complications from standard ATL are uncommon and the use of post-operative corticosteroids may reduce complications.•Following standard ATL, FMSE was present after treatment with corticosteroids that resolved after blood sugar control.•After epilepsy surgery, corticosteroids should be used cautiously in people with comorbid diabetes mellitus

    Deep Learning Coherent Diffractive Imaging

    Full text link
    We report the development of deep learning coherent electron diffractive imaging at sub-angstrom resolution using convolutional neural networks (CNNs) trained with only simulated data. We experimentally demonstrate this method by applying the trained CNNs to directly recover the phase images from electron diffraction patterns of twisted hexagonal boron nitride, monolayer graphene and a Au nanoparticle with comparable quality to those reconstructed by a conventional ptychographic method. Fourier ring correlation between the CNN and ptychographic images indicates the achievement of a spatial resolution in the range of 0.70 and 0.55 angstrom (depending on different resolution criteria). The ability to replace iterative algorithms with CNNs and perform real-time imaging from coherent diffraction patterns is expected to find broad applications in the physical and biological sciences.Comment: 19 pages, 7 figure

    Observation of a multitude of correlated states at the surface of bulk 1T-TaSe2_2 crystals

    Full text link
    The interplay between electron-electron interactions and structural ordering can yield exceptionally rich correlated electronic phases. We have used scanning tunneling microscopy to investigate bulk 1T-TaSe2 and have uncovered surprisingly diverse correlated surface states thereof. These surface states exhibit the same in-plane charge density wave ordering but dramatically different electronic ground states ranging from insulating to metallic. The insulating variety of surface state shows signatures of a decoupled surface Mott layer. The metallic surface states, on the other hand, exhibit zero-bias peaks of varying strength that suggest Kondo phases arising from coupling between the Mott surface layer and the metallic bulk of 1T-TaSe2. The surface of bulk 1T-TaSe2 thus constitutes a rare realization of the periodic Anderson model covering a wide parameter regime, thereby providing a model system for accessing different correlated phenomena in the same crystal. Our results highlight the central role played by strong correlations in this material family

    Visualizing and manipulating chiral interface states in a moir\'e quantum anomalous Hall insulator

    Full text link
    Moir\'e systems made from stacked two-dimensional materials host novel correlated and topological states that can be electrically controlled via applied gate voltages. We have used this technique to manipulate Chern domains in an interaction-driven quantum anomalous Hall insulator made from twisted monolayer-bilayer graphene (tMBLG). This has allowed the wavefunction of chiral interface states to be directly imaged using a scanning tunneling microscope (STM). To accomplish this tMBLG carrier concentration was tuned to stabilize neighboring domains of opposite Chern number, thus providing topological interfaces completely devoid of any structural boundaries. STM tip pulse-induced quantum dots were utilized to induce new Chern domains and thereby create new chiral interface states with tunable chirality at predetermined locations. Theoretical analysis confirms the chiral nature of observed interface states and enables the determination of the characteristic length scale of valley polarization reversal across neighboring tMBLG Chern domains. tMBLG is shown to be a useful platform for imaging the exotic topological properties of correlated moir\'e systems.Comment: 30 pages, 13 figures, 1 tabl

    Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures

    Get PDF
    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe2/MoS2 heterostructures by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 ms and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 mu s at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.115Ysciescopu
    corecore