3 research outputs found

    Virtual screening and site-directed mutagenesis-derived aptamers for precise <i>Salmonella typhimurium</i> prediction: emphasizing OmpD targeting and G-quadruplex stability

    No full text
    The efficient detection of the foodborne pathogen Salmonella typhimurium has historically been hampered by the constraints of traditional methods, characterized by protracted culture periods and intricate DNA extraction processes for PCR. To address this, our research innovatively focuses on the crucial and relatively uncharted virulence factor, the Outer Membrane Protein D (OmpD) in Salmonella typhimurium. By harmoniously integrating the power of virtual screening and site-directed mutagenesis, we unveiled aptamers exhibiting marked specificity for OmpD. Among these, aptamer 7ZQS stands out with its heightened binding affinity. Capitalizing on this foundation, we further engineered a repertoire of mutant aptamers, wherein APT6 distinguished itself, reflecting unmatched stability and specificity. Our rigorous validation, underpinned by cutting-edge bioinformatics tools, amplifies the prowess of APT6 in discerning and binding OmpD across an array of Salmonella typhimurium strains. This study illuminates a transformative approach to the prompt and accurate detection of Salmonella typhimurium, potentially redefining boundaries in applied analytical chemistry and bolstering diagnostic precision across diverse research and clinical domains. Communicated by Ramaswamy H. Sarma</p

    DataSheet1_Computational insights into the stereo-selectivity of catechins for the inhibition of the cancer therapeutic target EGFR kinase.pdf

    No full text
    The epidermal growth factor receptor (EGFR) plays a crucial role in regulating cellular growth and survival, and its dysregulation is implicated in various cancers, making it a prime target for cancer therapy. Natural compounds known as catechins have garnered attention as promising anticancer agents. These compounds exert their anticancer effects through diverse mechanisms, primarily by inhibiting receptor tyrosine kinases (RTKs), a protein family that includes the notable member EGFR. Catechins, characterized by two chiral centers and stereoisomerism, demonstrate variations in chemical and physical properties due to differences in the spatial orientation of atoms. Although previous studies have explored the membrane fluidity effects and transport across cellular membranes, the stereo-selectivity of catechins concerning EGFR kinase inhibition remains unexplored. In this study, we investigated the stereo-selectivity of catechins in inhibiting EGFR kinase, both in its wild-type and in the prevalent L858R mutant. Computational analyses indicated that all stereoisomers, including the extensively studied catechin (−)-EGCG, effectively bound within the ATP-binding site, potentially inhibiting EGFR kinase activity. Notably, gallated catechins emerged as superior EGFR inhibitors to their non-gallated counterparts, revealing intriguing binding trends. The top four stereoisomers exhibiting high dock scores and binding energies with wild-type EGFR comprise (−)-CG (−)-GCG (+)-CG, and (−)-EGCG. To assess dynamic behavior and stability, molecular dynamics simulations over 100 ns were conducted for the top-ranked catechin (−)-CG and the widely investigated catechin (−)-EGCG with EGFR kinase. This study enhances our understanding of how the stereoisomeric nature of a drug influences inhibitory potential, providing insights that could guide the selection of specific stereoisomers for improved efficacy inexisting drugs.</p

    Table1_Prediction of anticancer peptides derived from the true lectins of Phoenix dactylifera and their synergetic effect with mitotane.DOCX

    No full text
    Background and aims: Cancer continues to be a significant source of both illness and death on a global scale, traditional medicinal plants continue to serve as a fundamental resource of natural bioactive compounds as an alternative source of remedies. Although there have been numerous studies on the therapeutic role of Phoenix dactylifera, the study of the role of peptides has not been thoroughly investigated. This study aimed to investigate the anticancer activity of lectin peptides from P. dactylifera using in silico and in vivo analysis.Methods: Different computational tools were used to extract and predict anticancer peptides from the true lectins of P. dactylifera. Nine peptides that are bioactive substances have been investigated for their anticancer activity against MCF-7 and T47D (two forms of breast cancer). To counteract the unfavorable effects of mitotane, the most potent peptides (U3 and U7) were combined with it and assessed for anticancer activity against MCF-7 and HepG2.Results:In silico analysis revealed that nine peptides were predicted with anticancer activity. In cell lines, the lowest IC50 values were measured in U3 and U7 against MCF-7 and T47D cells. U3 or U7 in combination with mitotane demonstrated the lowest IC50 against MCF-7 and HepG2. The maximum level of cell proliferation inhibition was 22% when U3 (500 µg/mL) and 25 µg/mL mitotane were combined, compared to 41% when 25 µg/mL mitotane was used alone. When mitotane and U3 or U7 were combined, it was shown that these bioactive substances worked synergistically with mitotane to lessen its negative effects. The combination of peptides and mitotane could be regarded as an efficient chemotherapeutic medication having these bioactive properties for treating a variety of tumors while enhancing the reduction of side effects.</p
    corecore