37 research outputs found

    Fabrication and characterization of Novel PolyD-lactic acid nanocomposite membrane for water filtration purpose

    Get PDF
    The development of membrane technology from biopolymer for water filtration has received a great deal of attention from researchers and scientists, owing to the growing awareness of environmental protection. The present investigation is aimed at producing poly(D-lactic acid) (PDLA) membranes, incorporated with nanocrystalline cellulose (NCC) and cellulose nanowhisker (CNW) at different loadings of 1 wt.% (PDNC-I, PDNW-I) and 2 wt.% (PDNC-II PDNW-II). From morphological characterization, it was evident that the nanocellulose particles induced pore formation within structure of the membrane. Furthermore, the greater surface reactivity of CNW particles facilitates in enhancing the surface wettability of membranes due to increased hydrophilicity. In addition, both thermal and mechanical properties for all nanocellulose filled membranes under investigation demonstrated significant improvement, particularly for PDNW-I-based membranes, which showed improvement in both aspects. The membrane of PDNW-I presented water permeability of 41.92 L/m2h, when applied under a pressure range of 0.1–0.5 MPa. The investigation clearly demonstrates that CNWs-filled PDLA membranes fabricated for this investigation have a very high potential to be utilized for water filtration purpose in the future

    Effect of surface treatment on mechanical, physical and morphological properties of oil palm/bagasse fiber reinforced phenolic hybrid composites for wall thermal insulation application

    Get PDF
    The effect of 2%v/v silane and 4%v/v hydrogen peroxide treatment on mechanical, physical and morphological characterization of oil palm empty fruit bunch (OPEFB) and sugarcane bagasse (SCB) fiber reinforced bio-phenolic hybrid composites has been evaluated in this work. The treated OPEFB and SCB fibers has been prepared with different ratio while maintaining 50%wt fiber loading, and then incorporated with the bio-phenolic resin by hand layup technique to produce pure and hybrid composites. Universal testing machine INSTRON has been used for tensile, flexural, and compressive strength analysis. Water absorption and thickness swelling are determined after 24 h. Fracture behaviour, void and fiber pull out of the specimen was observed by using scanning electron microscope in morphological analysis. The hybridization of silane treated 7OPEFB:3SCB fiber indicates better highest performance on tensile strength and modulus with 11.67 MPa and 1348.43 MPa. The silane treated 5OPEFB:5SCB hybrid composites show highest flexural and compressive strength, 16.82 MPa and 6.53 MPa, respectively. Obtained result showed silane treated 3OPEFB:7SCB hybrid composites displays lowest water absorption and thickness swelling after 24 h analysis and show less void content. This study indicated that 2%v/v silane coupling agent gives better enhancement of mechanical properties compared to 4%v/v hydrogen peroxide treatment. Silane treated 5OPEFB:5SCB fiber reinforced bio-phenolic hybrid composites fulfil requirement of the mechanical and physical properties needed for insulation board as per standard. It can be concluded from this study that silane treatment improve the performance of agriculture residue and the hybridization of bio-composites have potential to develop new class of eco-friendly thermal insulation and sustainable wall building materials

    In Silico and In Vitro Exploration of Poziotinib and Olmutinib Synergy in Lung Cancer: Role of hsa-miR-7-5p in Regulating Apoptotic Pathway Marker Genes

    No full text
    Background and objectives: Non-small cell lung cancer (NSCLC) is often caused by EGFR mutations, leading to overactive cell growth pathways. Drug resistance is a significant challenge in lung cancer treatment, affecting therapy effectiveness and patient survival. However, combining drugs in research shows promise in addressing or delaying resistance, offering a more effective approach to cancer treatment. In this study, we investigated the potential alterations in the apoptotic pathway in A549 cells induced by a combined targeted therapy using tyrosine kinase inhibitors (TKIs) olmutinib and poziotinib, focusing on cell proliferation, differential gene expression, and in silico analysis of apoptotic markers. Methods: A combined targeted therapy involving olmutinib and poziotinib was investigated for its impact on the apoptotic pathway in A549 cells. Cell proliferation, quantitative differential gene expression, and in silico analysis of apoptotic markers were examined. A549 cells were treated with varying concentrations (1, 2.5, and 5 μM) of poziotinib, olmutinib, and their combination. Results: Treatment with poziotinib, olmutinib, and their combination significantly reduced cell proliferation, with the most pronounced effect at 2.5 μM (p p Conclusions: Combining poziotinib and olmutinib therapies may significantly improve drug tolerance and conquer drug resistance more effectively than using them individually in lung cancer patients, as suggested by this study’s mechanisms

    Self-Assembled Copolymeric Nanowires as a New Class of 3D Scaffold for Stem Cells Growth and Proliferation

    No full text
    Stem cell therapy has emerged as the most vibrant area of research, due to the capacity of stem cells for self-renewal and differentiation into different types of cell lines upon their culture. But lately, scientists become increasingly aware of the limitations of conventional 2D culture and stem cell culture media, due to several key drawbacks associated with this model, such as immune response upon transplantation, animal pathogen contamination, and complication, during developmental studies due to undefined factors in the cultural media. In this study, an attempt has been made to develop a new type of polymeric 3D scaffold based on the self-assembly of a star-like amphiphilic copolymer of poly(caprolactone)–poly(ethylene oxide) unit into nanowires (nanofibers), that have a scale similar to the native extracellular matrix and are capable of mimicking the extracellular microenvironment where the functional properties of stem cells can be observed and manipulated. The obtained data showed that polymeric-based nanofibers can be used as a 3D scaffold for mouse embryonic stem cells (mESCs) growth without losing their stem cell phenotype. The results obtained suggest that the polymeric 3D scaffolds (nanofibers) not only support stem cells’ growth and proliferation but also preserve the mESC pluripotency

    Morphology, structural, thermal, and tensile properties of bamboo microcrystalline cellulose/poly(lactic acid)/poly(butylene succinate) composites

    No full text
    The present study aims to develop a biodegradable polymer blend that is environmentally friendly and has comparable tensile and thermal properties with synthetic plastics. In this work, microcrystalline cellulose (MCC) extracted from bamboo-chips-reinforced poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blend composites were fabricated by melt-mixing at 180 °C and then hot pressing at 180 °C. PBS and MCC (0.5, 1, 1.5 wt%) were added to improve the brittle nature of PLA. Field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential scanning calorimetry (DSC)), and universal testing machine were used to analyze morphology, crystallinity, physiochemical, thermal, and tensile properties, respectively. The thermal stability of the PLA-PBS blends enhanced on addition of MCC up to 1wt % due to their uniform dispersion in the polymer matrix. Tensile properties declined on addition of PBS and increased with MCC above (0.5 wt%) however except elongation at break increased on addition of PBS then decreased insignificantly on addition of MCC. Thus, PBS and MCC addition in PLA matrix decreases the brittleness, making it a potential contender that could be considered to replace plastics that are used for food packaging

    Morphological, structural, thermal, permeability and antimicrobial activity of PBS and PBS/TPS films incorporated with Biomaster-silver for food packaging application

    No full text
    The development of antimicrobial film for food packaging application had become the focus for researchers and scientists. This research aims to study the characteristics and antimicrobial activity of novel biofilms made of poly (butylene succinate) (PBS) and tapioca starch (TPS) added with 1.5% or 3% of Biomaster-silver (BM) particle. In morphological examination, the incorporation of 3% BM particle was considerably good in forming well-structured PBS film. Meanwhile, the functional groups analysis revealed the 3% BM particle was effectively interacted with PBS molecular chains. The flame retard behavior of BM metal particle also helped in enhancing the thermal stability for pure PBS and PBS/TPS films. The nucleating effect of BM particles had improved the films crystallinity. Small pore size features with high barrier property for gas permeability was obtained for BM filled PBS/TPS films. From antimicrobial analysis, the BM particles possessed antimicrobial activity against three bacteria Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in which PBS/TPS 3% BM film exhibited strong antimicrobial activity against all tested bacteria, however, PBS/TPS 1.5% BM film exhibited strong antimicrobial activity against E. coli only. Hence, the incorporation of BM into PBS/TPS film could be a sustainable way for developing packaging films to preserve food products

    Evaluation of the Effect of Wheat Germ Oil and Olmutinib on the Thioacetamide-Induced Liver and Kidney Toxicity in Mice

    No full text
    Thioacetamide (TAA) intoxication produces a reproducible standard animal model of induced liver and kidney injuries where free radicals are produced by phase I oxidation reactions, which eventually leads to liver and kidney failure. Wheat germ oil (WGO) is a unique food supplement with concentrated nutrient efficiency and has remarkable antioxidant functions. Olmutinib, on the other hand, is a chemotherapy drug considered safe for kidneys and the liver. Therefore, in this study, WGO and olmutinib were investigated for their effect on TAA-induced liver and kidney damage. Inflammatory markers; interleukin-1 beta (IL-1β); IL-6; and the levels of enzymatic markers ALT (Alanine aminotransferase), AST (Aspartate aminotransferase), LDH (Lactate dehydrogenase), and CK (creatinine kinase) in serum for liver and kidney were analyzed and evaluated along with histopathological changes in the tissue. Thirty male mice 4–6 weeks of age were grouped into five groups of six animals: the control group (saline) and the other groups (Groups II to V), which were given thioacetamide for two weeks. In addition, Group II continued with TAA; Group III was given olmutinib (30 mg/kg), Group IV was given the wheat germ oil (WGO) (1400 mg/kg), and Group V was given (olmutinib (30 mg/kg) + WGO (1400 mg/kg)) for five days. The results suggested that olmutinib treatment potentiated TAA-induced liver and kidney injury. At the same time, WGO efficiently alleviated TAA and TAA–olmutinib toxicity in Groups IV and V. The histological studies also showed reduced damage with WGO in the animal model. Hence, it was concluded that WGO could significantly reduce liver and kidney damage caused by TAA and olmutinib in mice

    Morphology, Structural, Thermal, and Tensile Properties of Bamboo Microcrystalline Cellulose/Poly(Lactic Acid)/Poly(Butylene Succinate) Composites

    No full text
    The present study aims to develop a biodegradable polymer blend that is environmentally friendly and has comparable tensile and thermal properties with synthetic plastics. In this work, microcrystalline cellulose (MCC) extracted from bamboo-chips-reinforced poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blend composites were fabricated by melt-mixing at 180 °C and then hot pressing at 180 °C. PBS and MCC (0.5, 1, 1.5 wt%) were added to improve the brittle nature of PLA. Field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential scanning calorimetry (DSC)), and universal testing machine were used to analyze morphology, crystallinity, physiochemical, thermal, and tensile properties, respectively. The thermal stability of the PLA-PBS blends enhanced on addition of MCC up to 1wt % due to their uniform dispersion in the polymer matrix. Tensile properties declined on addition of PBS and increased with MCC above (0.5 wt%) however except elongation at break increased on addition of PBS then decreased insignificantly on addition of MCC. Thus, PBS and MCC addition in PLA matrix decreases the brittleness, making it a potential contender that could be considered to replace plastics that are used for food packaging

    Effects of Accelerated Weathering on Degradation Behavior of Basalt Fiber Reinforced Polymer Nanocomposites

    No full text
    This work aims to give insight on the effect of accelerated weathering, i.e., the combination of ultraviolet (UV) exposure and water spraying, on the visual and mechanical properties of basalt fiber reinforced polymer (BFRP) composites. The solvent exchange method, sonication and high shear milling technique were used to prepare the nanocomposite laminates. Three types of laminates were fabricated, i.e., unmodified BFRP, nanosilica modified BFRP and graphene nanoplatelet (GNP) modified BFRP composites with the total fiber loading of 45 wt.%. Glass fiber reinforced polymer (GFRP) laminate was also prepared for performance comparison purposes between the natural and synthetic fibers. The laminates were exposed to UV with a total weathering condition of 504 h using a Quantum-UV accelerated weathering tester. The weathering condition cycle was set at 8 h 60 °C UV exposure and 4 h 50 °C condensation. The discoloration visual inspection on the tested specimen was observed under the optical microscope. The obtained results showed that the UV exposure and water absorption caused severe discoloration of the laminates due to photo-oxidation reaction. The effect of weathering conditions on tensile and flexural properties of unmodified BFRP composites indicated that the UV exposure and water absorption caused reduction by 12% in tensile strength and by 7% in flexural strength. It is also found that the reduction in tensile and flexural properties of nanomodified BFRP composites was smaller than the unmodified system. It concluded from this work, that the mineral based composites (i.e., BFRP) has high potential for structural applications owing to its better properties than synthetic based composites (i.e., GFRP)
    corecore