17 research outputs found
Localization in Long-range Ultra Narrow Band IoT Networks using RSSI
Internet of things wireless networking with long range, low power and low
throughput is raising as a new paradigm enabling to connect trillions of
devices efficiently. In such networks with low power and bandwidth devices,
localization becomes more challenging. In this work we take a closer look at
the underlying aspects of received signal strength indicator (RSSI) based
localization in UNB long-range IoT networks such as Sigfox. Firstly, the RSSI
has been used for fingerprinting localization where RSSI measurements of GPS
anchor nodes have been used as landmarks to classify other nodes into one of
the GPS nodes classes. Through measurements we show that a location
classification accuracy of 100% is achieved when the classes of nodes are
isolated. When classes are approaching each other, our measurements show that
we can still achieve an accuracy of 85%. Furthermore, when the density of the
GPS nodes is increasing, we can rely on peer-to-peer triangulation and thus
improve the possibility of localizing nodes with an error less than 20m from
20% to more than 60% of the nodes in our measurement scenario. 90% of the nodes
is localized with an error of less than 50m in our experiment with
non-optimized anchor node locations.Comment: Accepted in ICC 17. To be presented in IEEE International Conference
on Communications (ICC), Paris, France, 201
Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey
Non-terrestrial networks (NTNs) traditionally have certain limited applications. However, the recent technological advancements and manufacturing cost reduction opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs). This article comprehensively surveys the evolution of NTNs highlighting their relevance to 5G networks and essentially, how it will play a pivotal role in the development of 6G ecosystem. We discuss important features of NTNs integration into TNs and the synergies by delving into the new range of services and use cases, various architectures, technological enablers, and higher layer aspects
pertinent to NTNs integration. Moreover, we review the corresponding challenges arising from the technical peculiarities and the new approaches being adopted to develop efficient integrated
ground-air-space (GAS) networks. Our survey further includes the major progress and outcomes from academic research as well as industrial efforts representing the main industrial trends, field
trials, and prototyping towards the 6G networks
Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey
Non-terrestrial networks (NTNs) traditionally have certain limited applications. However, the recent technological advancements and manufacturing cost reduction opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs). This article comprehensively surveys the evolution of NTNs highlighting their relevance to 5G networks and essentially, how it will play a pivotal role in the development of 6G ecosystem. We discuss important features of NTNs integration into TNs and the synergies by delving into the new range of services and use cases, various architectures, technological enablers, and higher layer aspects
pertinent to NTNs integration. Moreover, we review the corresponding challenges arising from the technical peculiarities and the new approaches being adopted to develop efficient integrated
ground-air-space (GAS) networks. Our survey further includes the major progress and outcomes from academic research as well as industrial efforts representing the main industrial trends, field
trials, and prototyping towards the 6G networks
Localization in Long Range Communication Networks Based on Machine Learning
As the number of devices connected to internet is rapidly increasing, it is expected that by 2025, every device will have a wireless connection, hence leading to trillions of wirelessly connected devices. Therefore, internet of things (IoT) with long range, low power and low throughput (e.g., Sigfox and LoRa) are raising as a new paradigm enabling to connect those trillions of devices efficiently.
In such networks with low power and throughput, localization became more challenging. However, in most of IoT applications (e.g., asset tracking) we are interested in localizing the nodes within a certain area, rather than estimating the exact position with global positioning system (GPS) coordinates. Therefore, the problem can be simplified to estimate the node’s sector. In this paper we propose a localization mechanism based on machine learning and assuming that some nodes in the sector are integrated with a GPS. By using these GPS-nodes as a reference the network can learn the position of the other nodes. The results revealed that using the user back-end measurements (e.g., received signal strength (RSS), number of base stations and the end-to-end delay) nodes can be divided in sectors. Then, the GPS-node is used to define the coordinates of the sector. Moreover, a trade off between number of messages and localization accuracy is illustrated.status: publishe
G2A Localization: Aerial Vehicles Localization Using a Ground Crowdsourced Network
In this paper, we address the ground-to-air (G2A) localization problem using a crowdsourced network with a mix of synchronized and unsynchronized receivers. First, we use a dynamic model to represent the offset and the skew of the unsynchronized receivers. This model is then used with a Kalman filter (KF) to compensate for the drifts of the unsynchronized receivers' clocks. Subsequently, the location of the aerial vehicle (AV) is estimated using another KF with the multilateration (MLAT) method and the dynamic model of the AV. We demonstrate the performance advantages of our method through a dataset collected by the OpenSky network. Our results show that the proposed dual KF method decreases the average localization error by orders of magnitude compared with a solo multilateration method. In particular, the proposed method brings the average localization error from tens of kilometers down to hundreds of meters, based on the considered dataset.status: publishe
Energy-Constrained UAV Trajectory Design for Ground Node Localization
The use of aerial anchors for localizing terrestrial nodes has recently been recognized as a cost-effective, swift and flexible solution for better localization accuracy, providing localization services when the GPS is jammed or satellite reception is not possible. In this paper, the localization of terrestrial nodes when using mobile unmanned aerial vehicles (UAVs) as aerial anchors is presented. We propose a novel framework to derive localization error in urban areas. In contrast to the existing works, our framework includes height-dependent UAV to ground channel characteristics and a highly detailed UAV energy consumption model. This enables us to explore different tradeoffs and optimize UAV trajectory for minimum localization error. In particular, we investigate the impact of UAV altitude, hovering time, number of waypoints and path length through formulating an energy-constrained optimization problem. Our results show that increasing the hovering time decreases the localization error considerably at the cost of a higher energy consumption. To keep the localization error below 100 m, shorter hovering is only possible when the path altitude and radius are optimized. For a constant hovering time of 5 seconds, tuning both parameters to their optimal values brings the localization error from 150 m down to 65 m with a power saving around 25%status: publishe