120 research outputs found
Subnanosecond spectral diffusion of a single quantum dot in a nanowire
We have studied spectral diffusion of the photoluminescence of a single CdSe
quantum dot inserted in a ZnSe nanowire. We have measured the characteristic
diffusion time as a function of pumping power and temperature using a recently
developed technique [G. Sallen et al, Nature Photon. \textbf{4}, 696 (2010)]
that offers subnanosecond resolution. These data are consistent with a model
where only a \emph{single} carrier wanders around in traps located in the
vicinity of the quantum dot
Robust optical emission polarization in MoS2 monolayers through selective valley excitation
We report polarization resolved photoluminescence from monolayer MoS2, a
two-dimensional, non-centrosymmetric crystal with direct energy gaps at two
different valleys in momentum space. The inherent chiral optical selectivity
allows exciting one of these valleys and close to 90% polarized emission at 4K
is observed with 40% polarization remaining at 300K. The high polarization
degree of the emission remains unchanged in transverse magnetic fields up to 9T
indicating robust, selective valley excitation.Comment: 5 pages, 3 figure
Subnanosecond spectral diffusion measurement using photon correlation
Spectral diffusion is a result of random spectral jumps of a narrow line as a
result of a fluctuating environment. It is an important issue in spectroscopy,
because the observed spectral broadening prevents access to the intrinsic line
properties. However, its characteristic parameters provide local information on
the environment of a light emitter embedded in a solid matrix, or moving within
a fluid, leading to numerous applications in physics and biology. We present a
new experimental technique for measuring spectral diffusion based on photon
correlations within a spectral line. Autocorrelation on half of the line and
cross-correlation between the two halves give a quantitative value of the
spectral diffusion time, with a resolution only limited by the correlation
set-up. We have measured spectral diffusion of the photoluminescence of a
single light emitter with a time resolution of 90 ps, exceeding by four orders
of magnitude the best resolution reported to date
Mesoscale simulations of surfactant dissolution and mesophase formation
The evolution of the contact zone between pure surfactant and solvent has
been studied by mesoscale simulation. It is found that mesophase formation
becomes diffusion controlled and follows the equilibrium phase diagram
adiabatically almost as soon as individual mesophases can be identified,
corresponding to times in real systems of order 10 microseconds.Comment: 4 pages, 2 figures, ReVTeX
De-Confinement in high multiplicity proton-proton collisions at LHC energies
Recently, the CMS Collaboration has published identified particle transverse
momentum spectra in high multiplicity events at LHC energies =
0.9-13 TeV. In the present work the transverse momentum spectra have been
analyzed in the framework of the color fields inside the clusters of
overlapping strings, which are produced in high energy hadronic collisions. The
non-Abelian nature is reflected in the coherence sum of the color fields which
as a consequence gives rise to an enhancement of the transverse momentum and a
suppression of the multiplicities relative to the non overlapping strings.
The initial temperature and shear viscosity to entropy density ratio
are obtained. For the higher multiplicity events at =7 and 13 TeV
the initial temperature is above the universal hadronization temperature and is
consistent with the creation of de-confined matter. In these small systems it
can be argued that the thermalization is a consequence of the quantum tunneling
through the event horizon introduced by the confining color fields, in analogy
to the Hawking-Unruh effect. The small shear viscosity to entropy density ratio
near the critical temperature suggests that the matter is a strongly
coupled Quark Gluon Plasma.Comment: 5 pages, 4 figure
Dark-bright mixing of interband transitions in symmetric semiconductor quantum dots
In photoluminescence spectra of symmetric [111] grown GaAs/AlGaAs quantum
dots in longitudinal magnetic fields applied along the growth axis we observe
in addition to the expected bright states also nominally dark transitions for
both charged and neutral excitons. We uncover a strongly non-monotonous, sign
changing field dependence of the bright neutral exciton splitting resulting
from the interplay between exchange and Zeeman effects. Our theory shows
quantitatively that these surprising experimental results are due to
magnetic-field-induced \pm 3/2 heavy-hole mixing, an inherent property of
systems with C_3v point-group symmetry.Comment: 5 pages, 3 figure
Multiple polariton modes originating from the coupling of quantum wells in planar microcavity
We report on the observation of multiple polariton modes, originating from an electronic coupling between quantum wells inside a planar microcavity. A series of excitonic transitions are measured for a bare quantum well stack and are precisely identified to electron-hole transitions originating from the coupling of the wells. When the quantum well stacks are placed at the antinode of a high Q-factor microcavity, a series of anticrossings is observed, which is characteristic of a multiplicity of polariton modes. This behavior is simulated using a coupled oscillator model accounting for the cavity mode and all allowed excitonic transitions
Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
Motivated by the triumph and limitation of graphene for electronic
applications, atomically thin layers of group VI transition metal
dichalcogenides are attracting extensive interest as a class of graphene-like
semiconductors with a desired band-gap in the visible frequency range. The
monolayers feature a valence band spin splitting with opposite sign in the two
valleys located at corners of 1st Brillouin zone. This spin-valley coupling,
particularly pronounced in tungsten dichalcogenides, can benefit potential
spintronics and valleytronics with the important consequences of spin-valley
interplay and the suppression of spin and valley relaxations. Here we report
the first optical studies of WS2 and WSe2 monolayers and multilayers. The
efficiency of second harmonic generation shows a dramatic even-odd oscillation
with the number of layers, consistent with the presence (absence) of inversion
symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show
the crossover from an indirect band gap semiconductor at mutilayers to a
direct-gap one at monolayers. The PL spectra and first-principle calculations
consistently reveal a spin-valley coupling of 0.4 eV which suppresses
interlayer hopping and manifests as a thickness independent splitting pattern
at valence band edge near K points. This giant spin-valley coupling, together
with the valley dependent physical properties, may lead to rich possibilities
for manipulating spin and valley degrees of freedom in these atomically thin 2D
materials
- …