9 research outputs found

    An Analysis of Resting-State Functional Transcranial Doppler Recordings from Middle Cerebral Arteries

    Get PDF
    Functional transcrannial Doppler (fTCD) is used for monitoring the hemodynamics characteristics of major cerebral arteries. Its resting-state characteristics are known only when considering the maximal velocity corresponding to the highest Doppler shift (so called the envelope signals). Significantly more information about the resting-state fTCD can be gained when considering the raw cerebral blood flow velocity (CBFV) recordings. In this paper, we considered simultaneously acquired envelope and raw CBFV signals. Specifically, we collected bilateral CBFV recordings from left and right middle cerebral arteries using 20 healthy subjects (10 females). The data collection lasted for 15 minutes. The subjects were asked to remain awake, stay silent, and try to remain thought-free during the data collection. Time, frequency and time-frequency features were extracted from both the raw and the envelope CBFV signals. The effects of age, sex and body-mass index were examined on the extracted features. The results showed that the raw CBFV signals had a higher frequency content, and its temporal structures were almost uncorrelated. The information-theoretic features showed that the raw recordings from left and right middle cerebral arteries had higher content of mutual information than the envelope signals. Age and body-mass index did not have statistically significant effects on the extracted features. Sex-based differences were observed in all three domains and for both, the envelope signals and the raw CBFV signals. These findings indicate that the raw CBFV signals provide valuable information about the cerebral blood flow which can be utilized in further validation of fTCD as a clinical tool. © 2013 Sejdić et al

    Integrative assessment of cerebral blood regulation in COPD patients

    Full text link
    Cerebrovascular responses were compared between COPD and non-COPD participants. The association between COPD severity and cognitive function was also investigated. Cerebral blood velocity in the middle cerebral artery, blood pressure, and end-tidal CO2 were recorded at rest, followed by a brain activation paradigm, and an inhaled gas mixture (5% CO2) to assess cerebral autoregulation (CA), neurovascular coupling (NVC) and cerebrovascular reactivity to carbon dioxide (CVRCO2), respectively. Pulmonary function, blood gas analysis (COPD) and cognitive function (MoCA test) were also performed. No difference in baseline (systemic and cerebral parameters) and CA was found between 20 severe COPD and 21 non-COPD. Reduced NVC and CVRCO2 test were found in the COPD group. Lower pulmonary function was positively correlated with CA, NVC and CVRCO2 in COPD patients. Cognitive impairment (MoCA<26) was associated with lower NVC responses (COPD and non-COPD) and lower pulmonary function (COPD). Both mechanisms, CVRCO2 and NVC, were lower in COPD patients. Moreover, disease severity and cognitive impaired were associated with worse cerebrovascular regulation
    corecore