4 research outputs found

    Causal Analysis of Ground-Level Ozone and Other Variables in Map Ta Phut Pollution Control Zone, Rayong Province, Thailand

    Get PDF
    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļŠāļīāļ‡āļŠāļēāđ€āļŦāļ•āļļāļ‚āļ­āļ‡āđ‚āļ­āđ‚āļ‹āļ™āļĢāļ°āļ”āļąāļšāļžāļ·āđ‰āļ™āļ”āļīāļ™āđāļĨāļ°āļ•āļąāļ§āđāļ›āļĢāļ­āļ·āđˆāļ™ āđ† āđƒāļ™āđ€āļ‚āļ•āļ„āļ§āļšāļ„āļļāļĄāļĄāļĨāļžāļīāļĐāļĄāļēāļšāļ•āļēāļžāļļāļ” āļˆāļąāļ‡āļŦāļ§āļąāļ”āļĢāļ°āļĒāļ­āļ‡ āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāļāļēāļĢāļĻāļķāļāļĐāļēāļ„āļĢāļąāđ‰āļ‡āļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļ­āļ˜āļīāļšāļēāļĒāļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāđ€āļŠāļīāļ‡āļŠāļēāđ€āļŦāļ•āļļāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ‚āļ­āđ‚āļ‹āļ™āļĢāļ°āļ”āļąāļšāļžāļ·āđ‰āļ™āļ”āļīāļ™āđāļĨāļ°āļ•āļąāļ§āđāļ›āļĢāļ­āļ·āđˆāļ™ āđ† āđ„āļ”āđ‰āđāļāđˆ āļ›āļąāļˆāļˆāļąāļĒāļ›āļāļīāļāļīāļĢāļīāļĒāļēāđ‚āļŸāđ‚āļ•āđ€āļ„āļĄāļĩ āļ›āļąāļˆāļˆāļąāļĒāļ—āļēāļ‡āļ­āļļāļ•āļļāļ™āļīāļĒāļĄāļ§āļīāļ—āļĒāļē āļ›āļąāļˆāļˆāļąāļĒāļĄāļĨāļžāļīāļĐāļ—āļēāļ‡āļ­āļēāļāļēāļĻ āđāļĨāļ°āļ›āļąāļˆāļˆāļąāļĒāļŠāļēāļĢāļ›āļĢāļ°āļāļ­āļšāļ­āļīāļ™āļ—āļĢāļĩāļĒāđŒāļĢāļ°āđ€āļŦāļĒāļ‡āđˆāļēāļĒ (VOCs) āđ‚āļ”āļĒāđƒāļŠāđ‰āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāđ€āļŠāļīāļ‡āļŠāļēāđ€āļŦāļ•āļļāļ”āđ‰āļ§āļĒāļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āļ•āļąāļ§āđāļšāļšāđ€āļŠāđ‰āļ™āļ—āļēāļ‡āļāļģāļĨāļąāļ‡āļŠāļ­āļ‡āļ™āđ‰āļ­āļĒāļ—āļĩāđˆāļŠāļļāļ”āļšāļēāļ‡āļŠāđˆāļ§āļ™ (PLS-PM) āļāļēāļĢāļĻāļķāļāļĐāļēāļ„āļĢāļąāđ‰āļ‡āļ™āļĩāđ‰āļĢāļ§āļšāļĢāļ§āļĄāļ‚āđ‰āļ­āļĄāļđāļĨāļĢāļ°āļŦāļ§āđˆāļēāļ‡āđ€āļ”āļ·āļ­āļ™āļĄāļāļĢāļēāļ„āļĄ āļž.āļĻ. 2551 āļ–āļķāļ‡ āđ€āļ”āļ·āļ­āļ™āļŠāļīāļ‡āļŦāļēāļ„āļĄ āļž.āļĻ. 2562 āļˆāļēāļāļāļĢāļĄāļ„āļ§āļšāļ„āļļāļĄāļĄāļĨāļžāļīāļĐ āļāļĢāļ°āļ—āļĢāļ§āļ‡āļ—āļĢāļąāļžāļĒāļēāļāļĢāļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāđāļĨāļ°āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄ āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļ›āļąāļˆāļˆāļąāļĒāļĄāļĨāļžāļīāļĐāļ—āļēāļ‡āļ­āļēāļāļēāļĻ āđāļĨāļ°āļ›āļąāļˆāļˆāļąāļĒāļ›āļāļīāļāļīāļĢāļīāļĒāļēāđ‚āļŸāđ‚āļ•āđ€āļ„āļĄāļĩ āļĄāļĩāļœāļĨāļāļĢāļ°āļ—āļšāļ—āļēāļ‡āļ•āļĢāļ‡āđ€āļŠāļīāļ‡āļšāļ§āļāļ•āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āđ‚āļ­āđ‚āļ‹āļ™āļĢāļ°āļ”āļąāļšāļžāļ·āđ‰āļ™āļ”āļīāļ™ āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāļŠāļąāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒāđ€āļŠāđ‰āļ™āļ—āļēāļ‡āđ€āļ—āđˆāļēāļāļąāļš 0.7453 āđāļĨāļ° 0.1423 āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ‚āļ“āļ°āļ—āļĩāđˆāļ›āļąāļˆāļˆāļąāļĒāļ—āļēāļ‡āļ­āļļāļ•āļļāļ™āļīāļĒāļĄāļ§āļīāļ—āļĒāļē āļĄāļĩāļœāļĨāļāļĢāļ°āļ—āļšāļ—āļēāļ‡āļ­āđ‰āļ­āļĄāđ€āļŠāļīāļ‡āļĨāļšāļ•āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āđ‚āļ­āđ‚āļ‹āļ™āļĢāļ°āļ”āļąāļšāļžāļ·āđ‰āļ™āļ”āļīāļ™ āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāļŠāļąāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒāđ€āļŠāđ‰āļ™āļ—āļēāļ‡āđ€āļ—āđˆāļēāļāļąāļš -0.6099 āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄ VOCs āđ„āļĄāđˆāđ„āļ”āđ‰āļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāđ‚āļ”āļĒāļ•āļĢāļ‡āļ•āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āđ‚āļ­āđ‚āļ‹āļ™āļĢāļ°āļ”āļąāļšāļžāļ·āđ‰āļ™āļ”āļīāļ™āđāļ•āđˆāļŠāđˆāļ‡āļœāļĨāļāļĢāļ°āļ—āļšāđ‚āļ”āļĒāļ•āļĢāļ‡āđ€āļŠāļīāļ‡āļšāļ§āļāļ•āđˆāļ­āļ›āļąāļˆāļˆāļąāļĒāļĄāļĨāļžāļīāļĐāļ—āļēāļ‡āļ­āļēāļāļēāļĻ āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāļŠāļąāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāđŒāđ€āļŠāđ‰āļ™āļ—āļēāļ‡āđ€āļ—āđˆāļēāļāļąāļš 0.2384 āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļ›āļąāļˆāļˆāļąāļĒāļĄāļĨāļžāļīāļĐāļ—āļēāļ‡āļ­āļēāļāļēāļĻāļˆāļķāļ‡āđ€āļ›āđ‡āļ™āļ›āļąāļˆāļˆāļąāļĒāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡āđ‚āļ­āđ‚āļ‹āļ™āļĢāļ°āļ”āļąāļšāļžāļ·āđ‰āļ™āļ”āļīāļ™  Causal Analysis of Ground-Level Ozone and Other Variables in Map Ta Phut Pollution Control Zone, Rayong Province, Thailand. This study aims to describe the causal relationship between ground-level ozone and other variables including photochemical reaction factors, meteorological factors, air pollution factors, and VOCs factors using causal analysis by partial least squares path modeling (PLS-PM). The data were collected during January 2008 to August 2019 from Pollution Control Department, Ministry of Natural Resources and Environment, Thailand. The results show that air pollution factors and photochemical reaction factors have the direct positive impact on ground-level ozone concentration with the path coefficient of 0.7453 and 0.1423, respectively. In contrast, meteorological factors have the indirect negative effect on ground-level ozone concentration with the path coefficient are -0.6099. However, VOCs do not have the direct impact on ground-level ozone concentration but have a direct positive impact with air pollution factors with the path coefficient is 0.2384. As a result, air pollution factors are the main factors affecting the concentration of ground-level ozone.

    Impact of Residential Concentration of PM2.5 Analyzed as Time-Varying Covariate on the Survival Rate of Lung Cancer Patients: A 15-Year Hospital-Based Study in Upper Northern Thailand

    No full text
    Air pollutants, especially particulate matter (PM) ≤ 2.5 µm (PM2.5) and PM ≤ 10 µm (PM10), are a major concern in upper northern Thailand. Data from a retrospective cohort comprising 9820 lung cancer patients diagnosed from 2003 to 2018 were obtained from the Chiang Mai Cancer Registry, and used to evaluate mortality and survival rates. Cox proportional hazard models were used to identify the association between the risk of death and risk factors including gender, age, cancer stage, smoking history, alcohol-use history, calendar year of enrollment, and time-updated PM2.5, PM10, NO2 and O3 concentrations. The mortality rate was 68.2 per 100 persons per year of follow-up. In a multivariate analysis, gender, age, cancer stage, calendar year of enrollment, and time-varying residential concentration of PM2.5 were independently associated with the risk of death. The lower the annually averaged PM2.5 and PM10 concentrations, the higher the survival probability of the patient. As PM2.5 and PM10 were factors associated with a higher risk of death, lung cancer patients who are inhabitant in the area should reduce their exposure to high concentrations of PM2.5 and PM10 to increase survival rates

    Detection of Electroencephalographic Abnormalities and Its Associated Factors among Children with Autism Spectrum Disorder in Thailand

    No full text
    Epilepsy often causes more severe behavioral problems in children with autism spectrum disorder (ASD) and is strongly associated with poor cognitive functioning. Interestingly, individuals with ASD without a history of epilepsy can have abnormal electroencephalographic (EEG) activity. The aim of this study was to examine associations between EEG abnormalities and the ASD severity in children. The children with ASD who enrolled at the Rajanagarindra Institute of Child Development, Thailand were included in this study. The severity of ASD was measured by interviewing their parents with the Thai autism treatment evaluation checklist. The short sensory profile checklist was used for screening the abnormality of children in each domain. Ordinal logistic regression analysis was used to examine associations between factors potentially linked to EEG abnormalities. Most of the study participants were boys (87.5%) and the median age was 5 years. Among the 128 children, 69.5% showed EEG abnormalities (41.4% slow-wave and 28.1% epileptiform-discharge). The results show that a larger number of symptoms and increased severity of ASD were independently associated with a higher risk of EEG abnormalities. Our results emphasize the need for guidelines on the presence of EEG abnormalities in children with ASD for the early detection of epilepsy and improving treatment outcomes

    The Optimal Cut-Off Point for Thai Diagnostic Autism Scale and Probability Prediction of Autism Spectrum Disorder Diagnosis in Suspected Children

    No full text
    The Thai Diagnostic Autism Scale (TDAS) was developed to diagnose autism spectrum disorder (ASD) under the context and characteristics of the Thai population. Although the tool has an excellent agreement, the interpretation of diagnostic results needs to rely on the optimal cut-off point to maximize efficiency and clarity. This study aims to find an optimal cut-off point for TDAS in the diagnosis of ASD and to compare its agreement with the DSM-5 ASD criteria. This study was conducted on 156 children aged 12–48 months old who were suspected of having ASD and had enrolled from hospitals in the four regions of Thailand in 2017–2018. The optimal cut-off point for TDAS was considered by using receiver operating characteristic (ROC) curves according to the DSM-5 ASD criteria. The areas under the curve (AUCs) for TDAS and ADOS-2 were also compared. Multivariable logistic regression was performed to create a predictive model for the probability of ASD. The AUC of TDAS was significantly higher than that of ADOS-2 (0.8748 vs. 0.7993; p = 0.033). The optimal cut-off point for TDAS was ≥20 points (accuracy = 82.05%, sensitivity = 82.86%, and specificity = 80.93%). Our findings show that TDAS with a cut-off point can yield higher diagnostic accuracy than ADOS-2 and TDAS domain. Diagnosis by using this cut-off point could be useful in practical assessments
    corecore