3 research outputs found

    Crystallization of calcium carbonate and magnesium hydroxide in the heat exchangers of once-through multistage flash (MSF-OT) desalination process

    Get PDF
    YesIn this paper, a dynamic model of fouling is presented to predict the crystallization of calcium carbonate and magnesium hydroxide inside the condenser tubes of Once-Through Multistage Flash (MSF-OT) desalination process. The model considers the combination of kinetic and mass diffusion rates taking into account the effect of temperature, velocity and salinity of the seawater. The equations for seawater carbonate system are used to calculate the concentration of the seawater species. The effects of salinity and temperature on the solubility of calcium carbonate and magnesium hydroxide are also considered. The results reveal an increase in the fouling inside the tubes caused by crystallization of CaCO3 and Mg(OH)2 with increase in the stage temperature. The intake seawater temperature and the Top Brine Temperature (TBT) are varied to investigate their impact on the fouling process. The results show that the (TBT) has greater impact than the seawater temperature on increasing the fouling

    A Review of the Configurations, Capabilities, and Cutting-Edge Options for Multistage Solar Stills in Water Desalination

    Get PDF
    The desalination of saltwater is a viable option to produce freshwater. All the desalination processes are energy-intensive and can be carried out on a large scale. Therefore, producing freshwater using renewable energy sources is the most desirable option considering the current energy crisis and the effect that fossil-fuel-based energy has on our carbon footprint. In this respect, the tray-type still, one of several solar power desalination still varieties, is popular owing to its straightforward design, economic materials of construction, and minimal maintenance requirements, especially in isolated island regions with restricted energy and natural water supplies. The traditional tray-type solar power has a few drawbacks, such as the inability to recover latent heat from condensation, reduced thermal convection, a large heat capacity, and comparatively minimal driving power through evaporation. Therefore, the improvement of heat and mass transfer capabilities in tray-type stills has been the subject of many studies. However, there is a lack of a comprehensive review in the open literature that covers the design and operational details of multistage solar stills. The purpose of this paper is to present a thorough overview of the past research on multistage solar stills, in terms of configurations, capabilities, and cutting-edge options. In comparison to a unit without a salt-blocking formation, the review indicates that a multistage distillation unit may run continuously at high radiation and generate pure water that is around 1.7 times higher than a unit without a salt-blocking formation. The most effective deign is found to be “V”-shaped solar still trays that attach to four-stage stills, since they are less expensive and more economical than the “floor” (Λ-shape) design, which requires two collectors. Additionally, it can be stated that the unit thermal efficiency, solar percentage, and collected solar energy (over the course of a year) increase by 23%, 18%, and 24%, respectively, when the solar collectors are increased by 26% (at the constant inflow velocity of the water)
    corecore