173 research outputs found

    Iron substitution in NdCoAsO: crystal structure and magnetic phase diagram

    Full text link
    The effects of replacing small amounts of Co with Fe in NdCoAsO are reported. Polycrystalline materials with compositions NdCo1-xFexAsO (x = 0.05, 0.10, 0.15, and 0.20) are studied and the results compared to previous reports for NdCoAsO. Rietveld analysis of powder x-ray diffraction data shows that as Fe replaces Co on the transition metal (T) site, the T-As distance increases, and the As tetrahedra surrounding the T-site become more regular. Electrical resistivity and magnetization measurements indicate that the three magnetic phase transitions in NdCoAsO are suppressed as Co is replaced by Fe, and these transitions are not observed above 1.8 K for x = 0.20. Based on these results, the magnetic phase diagram for the Co-rich side of the NdCoAsO-NdFeAsO system is constructed.Comment: Accepted for publication in Physical Review B, revised text and figures, 5 pages, 5 figure

    Anomalous Hall Effect in three ferromagnets: EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30

    Full text link
    The Hall resistivity (Rho_xy), resistivity (Rho_xx), and magnetization of three metallic ferromagnets are investigated as a function of magnetic field and temperature. The three ferromagnets, EuFe4Sb12 (Tc = 84 K), Yb14MnSb11 (Tc = 53 K), and Eu8Ga16Ge30 (Tc = 36 K) are Zintl compounds with carrier concentrations between 1 x 10^21 cm^-3 and 3.5 x 10^21 cm^-3. The relative decrease in Rho_xx below Tc [Rho_xx(Tc)/Rho_xx(2 K)] is 28, 6.5, and 1.3 for EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30 respectively. The low carrier concentrations coupled with low magnetic anisotropies allow a relatively clean separation between the anomalous (Rho_'xy), and normal contributions to the measured Hall resistivity. For each compound the anomalous contribution in the zero field limit is fit to alpha Rho_xx + sigma_xy rho_xx^2 for temperatures T < Tc. The anomalous Hall conductivity, sigma_xy, is -220 +- 5 (Ohm^-1 cm^-1), -14.7 +- 1 (Ohm^-1 cm^-1), and 28 +- 3 (Ohm^-1 cm^-1) for EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30 respectively and is independent of temperature for T < Tc if the change in spontaneous magnetization (order parameter) with temperature is taken into account. These data are consistent with recent theories of the anomalous Hall effect that suggest that even for stochiometric ferromagnetic crystals, such as those studied in this article, the intrinsic Hall conductivity is finite at T = 0, and is a ground state property that can be calculated from the electronic structure.Comment: 22 pages, 13 figures Submitted to PR

    Unusual Phase Transitions and Magnetoelastic Coupling in TlFe1.6Se2 Single Crystals

    Full text link
    Structural, magnetic, electrical transport, and heat capacity data are reported for single crystals of TlFe1.6Se2. This compound crystallizes in a tetragonal structure similar to the ThCr2Si2 structure, but with vacancies in the Fe layer. The vacancies can be ordered or disordered depending on temperature and thermal history. If the vacancies are ordered, the basal plane lattice constant increases from a to \sqrt{5}a. Antiferromagnetic order with the Fe spins along the c-axis occurs below T_N ~ 430K as shown by single crystal neutron diffraction and the magnetic structure is reported. In addition, for the vacancy ordered crystal, two other phase transitions are found at T_1 ~ 140K, and T_2 ~ 100K. The phase transitions at T_1 and T_2 are evident in heat capacity, magnetic susceptibility, resistivity data, a and c lattice parameters, and in the unusual temperature dependence of the magnetic order parameter determined from neutron scattering. The phase transitions at T_1 and T_2 result in significant changes in the magnetic moment per iron, with 1.72(6)\mu_B observed at 300K, 2.07(9)\mu_B at 140\,K, 1.90(9)\,\mu_B at 115\,K, and 1.31(8)\mu_B for 5\,K if the same "block checkerboard" magnetic structure is used at all temperatures. The phase transitions appear to be driven by small changes in the c lattice constant, large magnetoelastic coupling, and the localization of carriers with decreasing temperature.Comment: Accepted for publication in Physical Review

    Thermoelectric properties of Co, Ir, and Os-Doped FeSi Alloys: Evidence for Strong Electron-Phonon Coupling

    Full text link
    The effects of various transition metal dopants on the electrical and thermal transport properties of Fe1-xMxSi alloys (M= Co, Ir, Os) are reported. The maximum thermoelectric figure of merit ZTmax is improved from 0.007 at 60 K for pure FeSi to ZT = 0.08 at 100 K for 4% Ir doping. A comparison of the thermal conductivity data among Os, Ir and Co doped alloys indicates strong electron-phonon coupling in this compound. Because of this interaction, the common approximation of dividing the total thermal conductivity into independent electronic and lattice components ({\kappa}Total = {\kappa}electronic + {\kappa}lattice) fails for these alloys. The effects of grain size on thermoelectric properties of Fe0.96Ir0.04Si alloys are also reported. The thermal conductivity can be lowered by about 50% with little or no effect on the electrical resistivity or Seebeck coefficient. This results in ZTmax = 0.125 at 100 K, still about a factor of five too low for solid-state refrigeration applications

    Magnetic Phase Transitions in NdCoAsO

    Get PDF
    Magnetization measurements reveal that NdCoAsO undergoes three magnetic phase transitions below room temperature. The crystal and magnetic structures of NdCoAsO have been determined by powder neutron diffraction, and the effects of the phase transitions on physical properties are reported. Near 69 K a ferromagnetic state emerges with a small saturation moment of about 0.2 Bohr magnetons, likely on Co atoms. At 14 K the material enters an antiferromagnetic state with propagation vector (0 0 1/2) and small ordered moments (~0.4 Bohr magnetons) on Co and Nd. Near 3.5 K a third transition is observed, and corresponds to the antiferromagnetic ordering, with the same propagation vector, of larger moments on Nd reaching 1.30(2) Bohr magnetons at 1.4 K. In addition, transport properties and heat capacity results are presented, and show anomalies at all three phase transitions.Comment: Some minor changes made, and lower temperature neutron diffraction results are included. Accepted for publication in Physical Review

    Superconductivity at 22 K in Co-doped BaFe2As2 Crystals

    Full text link
    Here we report bulk superconductivity in BaFe1.8Co0.2As2 single crystals below Tc = 22 K, as demonstrated by resistivity, magnetic susceptibility, and specific heat data. Hall data indicate that the dominant carriers are electrons, as expected from simple chemical reasoning. This is the first example of superconductivity induced by electron doping in this family of materials. In contrast to the cuprates, the BaFe2As2 system appears to tolerate considerable disorder in the FeAs planes. First principles calculations for BaFe1.8Co0.2As2 indicate the inter-band scattering due to Co is weak.Comment: 9 pages, 3 figure
    corecore