10,006 research outputs found
Mixed symmetry localized modes and breathers in binary mixtures of Bose-Einstein condensates in optical lattices
We study localized modes in binary mixtures of Bose-Einstein condensates
embedded in one-dimensional optical lattices. We report a diversity of
asymmetric modes and investigate their dynamics. We concentrate on the cases
where one of the components is dominant, i.e. has much larger number of atoms
than the other one, and where both components have the numbers of atoms of the
same order but different symmetries. In the first case we propose a method of
systematic obtaining the modes, considering the "small" component as
bifurcating from the continuum spectrum. A generalization of this approach
combined with the use of the symmetry of the coupled Gross-Pitaevskii equations
allows obtaining breather modes, which are also presented.Comment: 11 pages, 16 figure
Ratchet-like dynamics of fluxons in annular Josephson junctions driven by bi-harmonic microwave fields
Experimental observation of the unidirectional motion of a topological
soliton driven by a bi-harmonic ac force of zero mean is reported. The
observation is made by measuring the current-voltage characteristics for a
fluxon trapped in an annular Josephson junction that was placed into a
microwave field. The measured dependence of the fluxon mean velocity (rectified
voltage) at zero dc bias versus the phase shift between the first and second
harmonic of the driving force is in qualitative agreement with theoretical
expectations.Comment: 6 figure
Quantum signatures of breather-breather interactions
The spectrum of the Quantum Discrete Nonlinear Schr\"odinger equation on a
periodic 1D lattice shows some interesting detailed band structure which may be
interpreted as the quantum signature of a two-breather interaction in the
classical case. We show that this fine structure can be interpreted using
degenerate perturbation theory.Comment: 4 pages, 4 fig
Analytical approach to soliton ratchets in asymmetric potentials
We use soliton perturbation theory and collective coordinate ansatz to
investigate the mechanism of soliton ratchets in a driven and damped asymmetric
double sine-Gordon equation. We show that, at the second order of the
perturbation scheme, the soliton internal vibrations can couple {\it
effectively}, in presence of damping, to the motion of the center of mass,
giving rise to transport. An analytical expression for the mean velocity of the
soliton is derived. The results of our analysis confirm the internal mode
mechanism of soliton ratchets proposed in [Phys. Rev. E {\bf 65} 025602(R)
(2002)].Comment: 9 figures. Submitted to Phys. Rev.
Three dimensional imaging of short pulses
We exploit a slightly noncollinear second-harmonic cross-correlation scheme
to map the 3D space-time intensity distribution of an unknown complex-shaped
ultrashort optical pulse. We show the capability of the technique to
reconstruct both the amplitude and the phase of the field through the coherence
of the nonlinear interaction down to a resolution of 10 m in space and 200
fs in time. This implies that the concept of second-harmonic holography can be
employed down to the sub-ps time scale, and used to discuss the features of the
technique in terms of the reconstructed fields.Comment: 16 pages, 6 figure
- …